It has been established in recent years how to approach acyclic cluster algebras of finite type using subword complexes. We continue this study by uniformly describing the - and -vectors, and by providing a conjectured description of the Newton polytopes of the -polynomials. We moreover show that this conjectured description would imply that finite type cluster complexes are realized by the duals of the Minkowski sums of the Newton polytopes of either the -polynomials or of the cluster variables, respectively. We prove this conjectured description to hold in type and in all types of rank at most including all exceptional types, leaving types , , and conjectural.
Accepted:
Published online:
DOI: 10.5802/alco.25
Brodsky, Sarah B. 1; Stump, Christian 1
@article{ALCO_2018__1_4_545_0, author = {Brodsky, Sarah B. and Stump, Christian}, title = {Towards a uniform subword complex description of acyclic finite type cluster algebras}, journal = {Algebraic Combinatorics}, pages = {545--572}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.25}, zbl = {06963904}, mrnumber = {3875076}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.25/} }
TY - JOUR AU - Brodsky, Sarah B. AU - Stump, Christian TI - Towards a uniform subword complex description of acyclic finite type cluster algebras JO - Algebraic Combinatorics PY - 2018 SP - 545 EP - 572 VL - 1 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.25/ DO - 10.5802/alco.25 LA - en ID - ALCO_2018__1_4_545_0 ER -
%0 Journal Article %A Brodsky, Sarah B. %A Stump, Christian %T Towards a uniform subword complex description of acyclic finite type cluster algebras %J Algebraic Combinatorics %D 2018 %P 545-572 %V 1 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.25/ %R 10.5802/alco.25 %G en %F ALCO_2018__1_4_545_0
Brodsky, Sarah B.; Stump, Christian. Towards a uniform subword complex description of acyclic finite type cluster algebras. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 545-572. doi : 10.5802/alco.25. https://alco.centre-mersenne.org/articles/10.5802/alco.25/
[1] Coxeter matroids, Progress in Mathematics, 216, Birkhäuser, 2003 | MR | Zbl
[2] Cluster algebras of type , tropical planes, and the positive tropical Grassmannian, Beitr. Algebra Geom., Volume 58 (2017) no. 1, pp. 25-46 | DOI | MR | Zbl
[3] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR | Zbl
[4] Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Am. Math. Soc., Volume 367 (2015) no. 2, pp. 1421-1439 | DOI | MR | Zbl
[5] Polytopal realizations of generalized associahedra, Can. Math. Bull., Volume 45 (2002) no. 4, pp. 537-566 | DOI | MR | Zbl
[6] Cluster algebras I: foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[7] Cluster algebras II: finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[8] Cluster algebras IV: coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[9] Permutahedra and generalized associahedra, Adv. Math., Volume 226 (2011) no. 1, pp. 608-640 | DOI | MR | Zbl
[10] Reflection groups and Coxeter groups, 29, Cambridge University Press, 1990, xii+204 pages | MR | Zbl
[11] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl
[12] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | Zbl
[13] Minkowski decomposition of associahedra and related combinatorics, Discrete Comput. Geom., Volume 50 (2013) no. 4, pp. 903-939 | DOI | MR | Zbl
[14] Associahedra via spines, Combinatorica, Volume 38 (2018) no. 2, pp. 443-486 | DOI | MR | Zbl
[15] Realization of the Stasheff polytope, Arch. Math., Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl
[16] Cluster expansion formulas and perfect matchings, J. Algebr. Comb., Volume 32 (2010) no. 2, pp. 187-209 | DOI | MR | Zbl
[17] Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl
[18] On tropical dualities in cluster algebras, Algebraic groups and quantum groups (Nagoya, 2010) (Contemporary Mathematics), Volume 565, American Mathematical Society, 2012, pp. 217-226 | DOI | MR | Zbl
[19] Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., Volume 276 (2015), pp. 1-61 | DOI | MR | Zbl
[20] Vertex barycenter of generalized associahedra, Proc. Am. Math. Soc., Volume 153 (2015) no. 6, pp. 2623-2636 | DOI | MR | Zbl
[21] Permutahedra, associahedra, and beyond, Int. Math. Res. Not., Volume 2009 (2009) no. 6, pp. 1026-1106 | DOI | Zbl
[22] Sortable elements and Cambrian lattices, Algebra Univers., Volume 56 (2007) no. 3-4, pp. 411-437 | DOI | MR | Zbl
[23] Combinatorial frameworks for cluster algebras, Int. Math. Res. Not., Volume 2016 (2016) no. 1, pp. 109-173 | DOI | MR | Zbl
[24] Cambrian frameworks for cluster algebras of affine type, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1429-1468 | DOI | MR | Zbl
[25] A cluster expansion formula ( case), Electron. J. Comb., Volume 15 (2008), Paper no. R64, 9 pages | MR | Zbl
[26] The tropical totally positive Grassmannian, J. Algebr. Comb., Volume 22 (2005) no. 2, pp. 189-210 | DOI | MR | Zbl
[27] Quantum F-polynomials in the theory of cluster algebras, Ph. D. Thesis, Northeastern University (USA) (2010), 99 pages (https://search.proquest.com/docview/275987433) | MR
[28] Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 855-895 | DOI | MR | Zbl
Cited by Sources: