Stanley–Reisner rings of simplicial complexes with a free action by an abelian group
Algebraic Combinatorics, Volume 1 (2018) no. 5, p. 677-695
We consider simplicial complexes admitting a free action by an abelian group. Specifically, we establish a refinement of the classic result of Hochster describing the local cohomology modules of the associated Stanley–Reisner ring, demonstrating that the topological structure of the free action extends to the algebraic setting. If the complex in question is also Buchsbaum, this new description allows for a specialization of Schenzel’s calculation of the Hilbert series of some of the ring’s Artinian reductions. In further application, we generalize to the Buchsbaum case the results of Stanley and Adin that provide a lower bound on the h-vector of a Cohen–Macaulay complex admitting a free action by a cyclic group of prime order.
Received : 2018-01-16
Revised : 2018-05-18
Accepted : 2018-06-20
Published online : 2018-11-30
DOI : https://doi.org/10.5802/alco.29
Classification:  13F55,  05E45,  05E40
Keywords: Stanley–Reisner rings, local cohomology, group actions
@article{ALCO_2018__1_5_677_0,
     author = {Sawaske, Connor},
     title = {Stanley--Reisner rings of simplicial complexes with a free action by an abelian group},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {1},
     number = {5},
     year = {2018},
     pages = {677-695},
     doi = {10.5802/alco.29},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2018__1_5_677_0}
}
Sawaske, Connor. Stanley–Reisner rings of simplicial complexes with a free action by an abelian group. Algebraic Combinatorics, Volume 1 (2018) no. 5, pp. 677-695. doi : 10.5802/alco.29. https://alco.centre-mersenne.org/item/ALCO_2018__1_5_677_0/

[1] Adin, Ron Combinatorial structure of simplicial complexes with symmetry, Hebrew University, Jerusalem (1991) (Ph. D. Thesis)

[2] Bourbaki, Nicolas Algebra. I. Chapters 1–3, Springer, Elements of Mathematics (1989), xxiv+709 pages (Translated from the French, Reprint of the 1974 edition) | MR 979982 | Zbl 0673.00001

[3] Duval, Art M. Free resolutions of simplicial posets, J. Algebra, Volume 188 (1997) no. 1, pp. 363-399 | Article | MR 1432361 | Zbl 0882.06004

[4] Garsia, Adriano M.; Stanton, Dennis Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. Math., Volume 51 (1984) no. 2, pp. 107-201 | Article | MR 736732 | Zbl 0561.06002

[5] Goto, Shiro On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra, Volume 85 (1983) no. 2, pp. 490-534 | Article | MR 725097 | Zbl 0529.13010

[6] Gräbe, Hans-Gert The canonical module of a Stanley-Reisner ring, J. Algebra, Volume 86 (1984) no. 1, pp. 272-281 | Article | MR 727379 | Zbl 0533.13003

[7] Gräbe, Hans-Gert Generalized Dehn-Sommerville equations and an upper bound theorem, Beitr. Algebra Geom. (1987) no. 25, pp. 47-60 | MR 899384 | Zbl 0623.52004

[8] Harima, Tadahito; Maeno, Toshiaki; Morita, Hideaki; Numata, Yasuhide; Wachi, Akihito; Watanabe, Junzo The Lefschetz properties, Springer, Lecture Notes in Math., Volume 2080 (2013), xx+250 pages | MR 3112920 | Zbl 1284.13001

[9] Hatcher, Allen Algebraic Topology, Cambridge University Press (2002), xii+544 pages | MR 1867354 | Zbl 1044.55001

[10] Iyengar, Srikanth B.; Leuschke, Graham J.; Leykin, Anton; Miller, Claudia; Miller, Ezra; Singh, Anurag K.; Walther, Uli Twenty-four hours of local cohomology, American Mathematical Society, Graduate Studies in Mathematics, Volume 87 (2007), xviii+282 pages | Article | MR 2355715 | Zbl 1129.13001

[11] Klee, Victor A combinatorial analogue of Poincaré’s duality theorem, Canad. J. Math., Volume 16 (1964), pp. 517-531 | Article | MR 0189039 | Zbl 0134.42403

[12] Miyazaki, Mitsuhiro Characterizations of Buchsbaum complexes, Manuscr. Math., Volume 63 (1989) no. 2, pp. 245-254 | Article | MR 980576 | Zbl 0671.13014

[13] Miyazaki, Mitsuhiro On the canonical map to the local cohomology of a Stanley-Reisner ring, Bull. Kyoto Univ. Educ., Ser. B (1991) no. 79, pp. 1-8 | MR 1143877 | Zbl 0741.55013

[14] Murai, Satoshi Tight combinatorial manifolds and graded Betti numbers, Collect. Math., Volume 66 (2015) no. 3, pp. 367-386 | Article | MR 3384014 | Zbl 06482869

[15] Murai, Satoshi; Novik, Isabella Face numbers of manifolds with boundary, Int. Math. Res. Not. (2017) no. 12, pp. 3603-3646 | MR 3693660

[16] Murai, Satoshi; Novik, Isabella; Yoshida, Ken-Ichi A duality in Buchsbaum rings and triangulated manifolds, Algebra Number Theory, Volume 11 (2017) no. 3, pp. 635-656 | Article | MR 3649363 | Zbl 1370.13019

[17] Novik, Isabella; Swartz, Ed Gorenstein rings through face rings of manifolds, Compos. Math., Volume 145 (2009) no. 4, pp. 993-1000 | Article | MR 2521251 | Zbl 1217.13009

[18] Novik, Isabella; Swartz, Ed Socles of Buchsbaum modules, complexes and posets, Adv. Math., Volume 222 (2009) no. 6, pp. 2059-2084 | Article | MR 2562774 | Zbl 1182.52010

[19] Reiner, Victor Quotients of Coxeter complexes and P-partitions, Mem. Am. Math. Soc., Volume 95 (1992) no. 460, vi+134 pages | MR 1101971 | Zbl 0751.06002

[20] Reisner, Gerald Allen Cohen-Macaulay quotients of polynomial rings, Adv. Math., Volume 21 (1976) no. 1, pp. 30-49 | Article | MR 0407036 | Zbl 0345.13017

[21] Schenzel, Peter On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z., Volume 178 (1981) no. 1, pp. 125-142 | Article | MR 627099 | Zbl 0472.13012

[22] Stanley, Richard P. On the number of faces of centrally-symmetric simplicial polytopes, Graphs Combin., Volume 3 (1987) no. 1, pp. 55-66 | Article | MR 932113 | Zbl 0611.52002

[23] Stanley, Richard P. f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra, Volume 71 (1991) no. 2-3, pp. 319-331 | Article | MR 1117642 | Zbl 0727.06009

[24] Stanley, Richard P. Combinatorics and commutative algebra, Birkhäuser, Progress in Mathematics, Volume 41 (1996), x+164 pages | MR 1453579 | Zbl 0838.13008

[25] Stückrad, Jürgen; Vogel, Wolfgang Buchsbaum rings and applications. An interaction between algebra, geometry, and topology, VEB Deutscher Verlag der Wissenschaften, Mathematische Monographien, Volume 21 (1986), 286 pages | Article | MR 873945 | Zbl 0606.130171