In this article we consider hook removal operators on odd partitions, i.e., partitions labelling odd-degree irreducible characters of finite symmetric groups. In particular we complete the discussion, started in [8] and developed in [3], concerning the commutativity of such operators.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.42
Mots-clés : Symmetric groups, Young graph
Bessenrodt, Christine 1; Giannelli, Eugenio 2; Olsson, Jørn B. 3
@article{ALCO_2019__2_2_249_0, author = {Bessenrodt, Christine and Giannelli, Eugenio and Olsson, J{\o}rn B.}, title = {Hook removal operators on the odd {Young} graph}, journal = {Algebraic Combinatorics}, pages = {249--274}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.42}, zbl = {07049525}, mrnumber = {3934830}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.42/} }
TY - JOUR AU - Bessenrodt, Christine AU - Giannelli, Eugenio AU - Olsson, Jørn B. TI - Hook removal operators on the odd Young graph JO - Algebraic Combinatorics PY - 2019 SP - 249 EP - 274 VL - 2 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.42/ DO - 10.5802/alco.42 LA - en ID - ALCO_2019__2_2_249_0 ER -
%0 Journal Article %A Bessenrodt, Christine %A Giannelli, Eugenio %A Olsson, Jørn B. %T Hook removal operators on the odd Young graph %J Algebraic Combinatorics %D 2019 %P 249-274 %V 2 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.42/ %R 10.5802/alco.42 %G en %F ALCO_2019__2_2_249_0
Bessenrodt, Christine; Giannelli, Eugenio; Olsson, Jørn B. Hook removal operators on the odd Young graph. Algebraic Combinatorics, Volume 2 (2019) no. 2, pp. 249-274. doi : 10.5802/alco.42. https://alco.centre-mersenne.org/articles/10.5802/alco.42/
[1] Odd partitions in Young’s lattice, Sémin. Lothar. Comb., Volume 75 (2016), Paper no. B75g, 13 pages | MR | Zbl
[2] On hooks of Young diagrams, Ann. Comb., Volume 2 (1998) no. 2, pp. 103-110 | DOI | MR | Zbl
[3] Restriction of odd degree characters of , SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), Paper no. 070, 10 pages | DOI | MR | Zbl
[4] Characters of finite groups, W. A. Benjamin, 1967, viii+186 pages | MR | Zbl
[5] Characters of odd degree of symmetric groups, J. Lond. Math. Soc., Volume 96 (2017) no. 1, pp. 1-14 | DOI | MR | Zbl
[6] Restriction of odd degree characters and natural correspondences, Int. Math. Res. Not. (2017) no. 20, pp. 6089-6118 | DOI | MR | Zbl
[7] On the -subgraph of the Young graph (2018) (to appear in Algebr. Represent. Theory) | arXiv | Zbl
[8] Character restrictions and multiplicities in symmetric groups, J. Algebra, Volume 478 (2017), pp. 271-282 | DOI | MR | Zbl
[9] The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, 1978, v+156 pages | MR
[10] The representation theory of the symmetric group, Encyclopedia of Mathematics and Its Applications, 16, Addison-Wesley Publishing Co., 1981, xxviii+510 pages (With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson) | MR | Zbl
[11] Irreducible representations of odd degree, J. Algebra, Volume 20 (1972), pp. 416-418 | DOI | MR | Zbl
[12] Combinatorics and Representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, 20, Univ. GH Essen, 1994, 94 pages | Zbl
Cited by Sources: