The gonality sequence of a smooth algebraic curve comprises the minimal degrees of linear systems of rank . We explain two approaches to compute the gonality sequence of smooth curves in : a tropical and a classical approach. The tropical approach uses the recently developed Brill–Noether theory on tropical curves and Baker’s specialization of linear systems from curves to metric graphs [1]. The classical one extends the work [12] of Hartshorne on plane curves to curves on .
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.47
Cools, Filip 1; D’Adderio, Michele 2; Jensen, David 3; Panizzut, Marta 4
CC-BY 4.0
@article{ALCO_2019__2_3_323_0,
author = {Cools, Filip and D{\textquoteright}Adderio, Michele and Jensen, David and Panizzut, Marta},
title = {Brill{\textendash}Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches},
journal = {Algebraic Combinatorics},
pages = {323--341},
publisher = {MathOA foundation},
volume = {2},
number = {3},
year = {2019},
doi = {10.5802/alco.47},
zbl = {07066877},
mrnumber = {3968740},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.47/}
}
TY - JOUR
AU - Cools, Filip
AU - D’Adderio, Michele
AU - Jensen, David
AU - Panizzut, Marta
TI - Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches
JO - Algebraic Combinatorics
PY - 2019
SP - 323
EP - 341
VL - 2
IS - 3
PB - MathOA foundation
UR - https://alco.centre-mersenne.org/articles/10.5802/alco.47/
DO - 10.5802/alco.47
LA - en
ID - ALCO_2019__2_3_323_0
ER -
%0 Journal Article
%A Cools, Filip
%A D’Adderio, Michele
%A Jensen, David
%A Panizzut, Marta
%T Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches
%J Algebraic Combinatorics
%D 2019
%P 323-341
%V 2
%N 3
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.47/
%R 10.5802/alco.47
%G en
%F ALCO_2019__2_3_323_0
Cools, Filip; D’Adderio, Michele; Jensen, David; Panizzut, Marta. Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches. Algebraic Combinatorics, Volume 2 (2019) no. 3, pp. 323-341. doi: 10.5802/alco.47
[1] Specialization of linear systems from curves to graphs, Algebra Number Theory, Volume 2 (2008) no. 6, pp. 613-653 (With an appendix by Brian Conrad) | DOI | Zbl | MR
[2] Degeneration of linear series from the tropical point of view and applications, Nonarchimedean and tropical geometry (Simons Symposia), Springer, 2016, pp. 365-433 | DOI | Zbl
[3] Riemann–Roch and Abel–Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | MR | Zbl | DOI
[4] Linear pencils encoded in the Newton polygon, Int. Math. Res. Not. (2017) no. 10, pp. 2998-3049 | MR | Zbl
[5] Alcune applicazioni di un classico procedimento di Castelnuovo, Semin. Geom., Univ. Studi Bologna, Volume 1982-1983 (1984) no. 10, pp. 17-43 | Zbl
[6] A tropical proof of the Brill–Noether theorem, Adv. Math., Volume 230 (2012) no. 2, pp. 759-776 | Zbl | MR | DOI
[7] The gonality sequence of complete graphs, Electron. J. Comb., Volume 24 (2017) no. 4, Paper no. P4.1, 20 pages | MR | Zbl
[8] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | Zbl | MR
[9] The sandpile model on and the rank of its configurations, Sémin. Lothar. Comb., Volume 77 (2016), Paper no. B77h, 48 pages | Zbl | MR
[10] A Riemann–Roch theorem in tropical geometry, Math. Z., Volume 259 (2008) no. 1, pp. 217-230 | Zbl | MR | DOI
[11] On the variety of special linear systems on a general algebraic curve, Duke Math. J., Volume 47 (1980) no. 1, pp. 233-272 | Zbl | MR
[12] Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ., Volume 26 (1986) no. 3, pp. 375-386 | Zbl | MR | DOI
[13] Rank of divisors on tropical curves, J. Comb. Theory, Ser. A, Volume 120 (2013) no. 7, pp. 1521-1538 | MR | DOI | Zbl
[14] Brill–Noether theory for curves of a fixed gonality (2017) (https://arxiv.org/abs/1701.06579)
[15] On the gonality sequence of an algebraic curve, Manuscr. Math., Volume 137 (2012) no. 3-4, pp. 457-473 | DOI | MR | Zbl
[16] Clifford indices for vector bundles on curves, Affine flag manifolds and principal bundles (Trends in Mathematics), Birkhäuser, 2010, pp. 165-202 | DOI | Zbl
[17] Rank-determining sets of metric graphs, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 6, pp. 1775-1793 | Zbl | MR | DOI
[18] Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemporary Mathematics), Volume 465, American Mathematical Society, 2008, pp. 203-230 | Zbl | DOI | MR
[19] Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. König. Akad. Wiss., 1883
[20] Brill–Noether varieties of -gonal curves, Adv. Math., Volume 312 (2017), pp. 46-63 | DOI | Zbl | MR
[21] Introduction to the problem of minimal models in the theory of algebraic surfaces, Publications of the Mathematical Society of Japan, 4, Mathematical Society of Japan, 1958, vii+89 pages | Zbl | MR
Cited by Sources: