# ALGEBRAIC COMBINATORICS

Skew hook formula for $d$-complete posets via equivariant $K$-theory
Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 541-571.

Peterson and Proctor obtained a formula which expresses the multivariate generating function for $P$-partitions on a $d$-complete poset $P$ as a product in terms of hooks in $P$. In this paper, we give a skew generalization of Peterson–Proctor’s hook formula, i.e. a formula for the generating function of $\left(P\setminus F\right)$-partitions for a $d$-complete poset $P$ and an order filter $F$ of $P$, by using the notion of excited diagrams. Our proof uses the Billey-type formula and the Chevalley-type formula in the equivariant $K$-theory of Kac–Moody partial flag varieties. This generalization provides an alternate proof of Peterson–Proctor’s hook formula. As the equivariant cohomology version, we derive a skew generalization of a combinatorial reformulation of Nakada’s colored hook formula for roots.

Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.54
Classification: 05A15,  06A07,  14N15,  19L47
Keywords: $d$-complete posets, hook formulas, $P$-partitions, Schubert calculus, equivariant $K$-theory
@article{ALCO_2019__2_4_541_0,
author = {Naruse, Hiroshi and Okada, Soichi},
title = {Skew hook formula for $d$-complete posets via equivariant $K$-theory},
journal = {Algebraic Combinatorics},
pages = {541--571},
publisher = {MathOA foundation},
volume = {2},
number = {4},
year = {2019},
doi = {10.5802/alco.54},
mrnumber = {3997510},
zbl = {1417.05011},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.54/}
}
Naruse, Hiroshi; Okada, Soichi. Skew hook formula for $d$-complete posets via equivariant $K$-theory. Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 541-571. doi : 10.5802/alco.54. https://alco.centre-mersenne.org/articles/10.5802/alco.54/

 Billey, S. Kostant polynomials and the cohomology ring for $G/B$, Duke Math. J., Volume 96 (1999), pp. 205-224 | Article | MR 1663931 | Zbl 0980.22018

 Buch, A. S.; Mihalcea, L C. Curve neighborhoods of Schubert varieties, J. Differential Geom., Volume 99 (2015) no. 2, pp. 255-283 | Article | MR 3302040 | Zbl 06423472

 Frame, J. S.; Robinson, G. de B.; Thrall, R. W. The hook graphs of the symmetric group, Can. J. Math., Volume 6 (1954), pp. 316-325 | Article | MR 62127 | Zbl 0055.25404

 Gansner, E. R. The Hillman–Grassl correspondence and the enumeration of reverse plane partitions, J. Combin. Theory Ser. A, Volume 30 (1981), pp. 71-89 | Article | MR 607040 | Zbl 0474.05008

 Graham, W.; Kreiman, V. Excited Young diagrams, equivariant $K$-theory, and Schubert varieties, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6597-6645 | Article | MR 3356949 | Zbl 1317.05187

 Humphreys, J. E. Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, 1992 | Zbl 0768.20016

 Ikeda, T.; Naruse, H. Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 5193-5221 | Article | MR 2515809 | Zbl 1229.05287

 Ikeda, T.; Naruse, H. $K$-theoretic analogues of factorial Schur $P$- and $Q$-functions, Adv. Math., Volume 243 (2013), pp. 22-66 | Article | MR 3062739 | Zbl 1278.05240

 Ishikawa, M.; Tagawa, H. Schur function identities and hook length posets, Proceedings of the 19th International Conference on Formal Power Series and Algebraic Combinatorics (Tianjin, July 2–6, 2007) (2007) (available at http://igm.univ-mlv.fr/~fpsac/FPSAC07/SITE07/PDF-Proceedings/Posters/55.pdf)

 Ishikawa, M.; Tagawa, H. Leaf posets and multivariate hook length property, RIMS Kokyuroku, Volume 1913 (2014), pp. 67-80

 Kashiwara, M. The flag manifold of Kac–Moody Lie algebra, Algebraic Analysis, Geometry, and Number Theory: Proceedings of the JAMI Inaugural Conference (Igusa, J., ed.), Johns Hopkins Univ. Press, 1989, pp. 161-190 | Zbl 0764.17019

 Kim, J.; Yoo, M. Hook length property of $d$-complete posets via $q$-integrals, J. Combin. Theory, Ser. A, Volume 162 (2019), pp. 167-221 | Article | MR 3873874 | Zbl 1401.05035

 Kirillov, A. N.; Naruse, H. Construction of double Grothendieck polynomials of classical types using IdCoxeter algebras, Tokyo J. Math., Volume 39 (2017) no. 3, pp. 695-728 | Article | MR 3634289 | Zbl 1364.05081

 Knuth, D. E. The Art of Computer Programming, Volume 3: Sorting and Searching, 3rd Edition, Addison-Wesley, 1973

 Kreiman, V. Schubert classes in the equivariant $K$-theory and equivariant cohomology of the Grassmannian (https://arxiv.org/abs/math/0512204)

 Kreiman, V. Schubert classes in the equivariant $K$-theory and equivariant cohomology of the Lagrangian Grassmannian (https://arxiv.org/abs/math/0602245)

 Kumar, S. Kac–Moody Groups, their Flag Varieties and Representation Theory, Prog. Math., 204, Birkhäuser, 2002 | MR 1923198 | Zbl 1026.17030

 Lam, T.; Schilling, A.; Shimozono, M. $K$-theory Schubert calculus of the affine Grassmannian, Comp. Math., Volume 146 (2010) no. 4, pp. 811-852 | Article | MR 2660675 | Zbl 1256.14056

 Lenart, C.; Postnikov, A. Affine Weyl groups in $K$-theory and representation theory, Int. Math. Res. Not. IMRN, Volume 2007 (2007), Paper no. rnm038 | MR 2344548 | Zbl 1137.14037

 Lenart, C.; Shimozono, M. Equivariant $K$-Chevalley rules for Kac–Moody flag manifolds, Amer. J. Math., Volume 136 (2014) no. 5, pp. 1175-1213 | Article | MR 3263896 | Zbl 1328.19012

 Mihalcea, L. On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms, Duke Math. J., Volume 140 (2007) no. 2, pp. 321-350 | Article | MR 2359822 | Zbl 1135.14042

 Morales, A.; Pak, I.; Panova, G. Hook formulas for skew shapes I. $q$-analogues and bijections, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 350-405 | Article | MR 3718070 | Zbl 1373.05026

 Nakada, K. $q$-Hook formula for a generalized Young diagram (in preparation)

 Nakada, K. Colored hook formula for a generalized Young diagram, Osaka J. Math., Volume 45 (2008) no. 4, pp. 1085-1120 | MR 2493972 | Zbl 1204.05099

 Nakada, K. $q$-Hook formula of Gansner type for a generalized Young diagram, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (DMTCS Proceedings), Volume AK (2009), pp. 685-696 | MR 2721553 | Zbl 1392.05117

 Naruse, H. Schubert calculus and hook formula (Talk slides at 73rd Sém. Lothar. Combin., Strobl, Austria, 2014, available at https://www.mat.univie.ac.at/~slc/wpapers/s73vortrag/naruse.pdf)

 Okada, S. $\left(q,t\right)$-Deformations of multivariate hook product formulae, J. Algebraic Combin., Volume 32 (2010) no. 3, pp. 399-416 | Article | MR 2721059 | Zbl 1228.05048

 Pechenik, O.; Yong, A. Equivariant $K$-theory of Grassmannians, Forum Math. $\Pi$, Volume 5 (2017), Paper no. e3 | MR 3668467 | Zbl 1369.14060

 Proctor, R. A. Dynkin diagram classification of $\lambda$-minuscule Bruhat lattices and $d$-complete posets, J. Algebraic Combin., Volume 9 (1999) no. 1, pp. 61-94 | Article | MR 1676724 | Zbl 0920.06003

 Proctor, R. A. Minuscule elements of Weyl groups, the number game, and $d$-complete posets, J. Algebra, Volume 213 (1999) no. 1, pp. 272-303 | Article | MR 1674686 | Zbl 0969.05068

 Proctor, R. A. $d$-Complete posets generalize Young diagrams for the hook product formula: Partial presentation of proof, RIMS Kokyuroku, Volume 1913 (2014), pp. 120-140

 Proctor, R. A.; Scoppetta, L. M. $d$-Complete posets: Local structural axioms, properties, and equivalent definitions, Order (2018) (https://doi.org/10.1007/s11083-018-9473-4) | Article | Zbl 07143294

 Schur, I. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | Zbl 42.0154.02

 Stanley, R. P. Theory and application of plane partitions, Part 2, Studies in Applied Math., Volume 50 (1971) no. 3, pp. 259-279 | Article

 Stanley, R. P. Ordered Structures and Partitions, Mem. Amer. Math. Soc., 119, Amer. Math. Soc., 1972, iii + 104 pages pages | MR 332509 | Zbl 0246.05007

 Stanley, R. P. Enumerative Combinatorics, Volume I, Cambridge Stud. Adv. Math., 49, Cambridge Univ. Press, 1997

 Stembridge, J. R. On the fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 5 (1996) no. 4, pp. 353-385 | Article | MR 1406459 | Zbl 0864.20025

 Stembridge, J. R. Minuscule elements of Weyl groups, J. Algebra, Volume 235 (2001) no. 2, pp. 722-743 | Article | MR 1805477 | Zbl 0973.17034

 Thrall, R. W. A combinatorial problem, Michigan Math. J., Volume 1 (1952) no. 1, pp. 81-88 | Zbl 0049.01001