Hook formulas for skew shapes III. Multivariate and product formulas
Algebraic Combinatorics, Volume 2 (2019) no. 5, p. 815-861

We give new product formulas for the number of standard Young tableaux of certain skew shapes and for the principal evaluation of certain Schubert polynomials. These are proved by utilizing symmetries for evaluations of factorial Schur functions, extensively studied in the first two papers in the series [54, 52]. We also apply our technology to obtain determinantal and product formulas for the partition function of certain weighted lozenge tilings, and give various probabilistic and asymptotic applications.

Received : 2017-11-18
Revised : 2018-11-07
Accepted : 2019-02-20
Published online : 2019-10-08
DOI : https://doi.org/10.5802/alco.67
Keywords: skew standard tableaux, product formulas, hook length, lozenge tilings, Schubert polynomials
@article{ALCO_2019__2_5_815_0,
     author = {Morales, Alejandro H. and Pak, Igor and Panova, Greta},
     title = {Hook formulas for skew shapes III. Multivariate and product formulas},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {2},
     number = {5},
     year = {2019},
     pages = {815-861},
     doi = {10.5802/alco.67},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2019__2_5_815_0}
}
Morales, Alejandro H.; Pak, Igor; Panova, Greta. Hook formulas for skew shapes III. Multivariate and product formulas. Algebraic Combinatorics, Volume 2 (2019) no. 5, pp. 815-861. doi : 10.5802/alco.67. https://alco.centre-mersenne.org/item/ALCO_2019__2_5_815_0/

[1] Adin, Ron; Roichman, Yuval Standard Young tableaux, Handbook of enumerative combinatorics, CRC Press, Boca Raton, FL (Discrete Math. Appl. (Boca Raton)) (2015), pp. 895-974 | Article | MR 3409355 | Zbl 1330.05162

[2] Ardila, Federico; Serrano, Luis G. Staircase skew Schur functions are Schur P-positive, J. Algebraic Combin., Volume 36 (2012) no. 3, pp. 409-423 | Article | MR 2969070 | Zbl 1253.05137

[3] Askey, Richard A.; Roy, Ranjan Barnes G function, NIST Handbook of Mathematical Functions, Cambridge University Press (2010)

[4] Austen, Jane Pride and prejudice, T. Edgerton, Whitehall, London, England Volume I.–III (1813)

[5] Baryshnikov, Yuliy; Romik, Dan Enumeration formulas for Young tableaux in a diagonal strip, Israel J. Math., Volume 178 (2010), pp. 157-186 | Article | MR 2733067 | Zbl 1206.05011

[6] Betea, Dan Elliptic Combinatorics and Markov Processes, California Institute of Technology (USA) (2012), 124 pages (Ph. D. Thesis) | MR 3047209

[7] Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula, Algebr. Comb., Volume 2 (2019) no. 2, pp. 217-248 | MR 3934829 | Zbl 1409.05024

[8] Billey, Sara C.; Jockusch, William; Stanley, Richard P. Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | Article | MR 1241505 | Zbl 0790.05093

[9] Borodin, Alexei; Gorin, Vadim Shuffling algorithm for boxed plane partitions, Adv. Math., Volume 220 (2009) no. 6, pp. 1739-1770 | Article | MR 2493180 | Zbl 1172.60020

[10] Borodin, Alexei; Gorin, Vadim; Rains, Eric M. q-distributions on boxed plane partitions, Sel. Math. (N.S.), Volume 16 (2010) no. 4, pp. 731-789 | Article | MR 2734330 | Zbl 1205.82122

[11] Bressoud, David M. Proofs and confirmations. The story of the alternating sign matrix conjecture, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, MAA Spectrum (1999), xvi+274 pages | MR 1718370 | Zbl 0944.05001

[12] Cohn, Henry; Larsen, Michael; Propp, James The shape of a typical boxed plane partition, New York J. Math., Volume 4 (1998), pp. 137-165 | MR 1641839 | Zbl 0908.60083

[13] Dewitt, Elizabeth Angela Identities Relating Schur s-Functions and Q-Functions, University of Michigan (USA) (2012), 67 pages (Ph. D. Thesis) | MR 3093984

[14] Dousse, Jehanne; Féray, Valentin Asymptotics for skew standard Young tableaux via bounds for characters (2017) (https://arxiv.org/abs/1710.05652, to appear Proc. Amer. Math. Soc.) | Zbl 07104944

[15] Fischer, Ilse A bijective proof of the hook-length formula for shifted standard tableaux (2001) (https://arxiv.org/abs/math/0112261 )

[16] Flajolet, Philippe; Sedgewick, Robert Analytic combinatorics, Cambridge University Press, Cambridge (2009), xiv+810 pages | Article | MR 2483235 | Zbl 1165.05001

[17] Fomin, Sergey; Kirillov, Anatol N. Reduced words and plane partitions, J. Algebraic Combin., Volume 6 (1997) no. 4, pp. 311-319 | Article | MR 1471891 | Zbl 0882.05010

[18] Gorin, Vadim; Panova, Greta Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory, Ann. Probab., Volume 43 (2015) no. 6, pp. 3052-3132 | Article | MR 3433577 | Zbl 1390.05240

[19] Gowers, W. Timothy The two cultures of mathematics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI (2000), pp. 65-78 | MR 1754768 | Zbl 0998.00003

[20] Greene, Curtis; Nijenhuis, Albert; Wilf, Herbert S A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. Math., Volume 31 (1979) no. 1, pp. 104-109 | Article | MR 521470 | Zbl 0398.05008

[21] Ikeda, Takeshi; Naruse, Hiroshi Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5193-5221 | Article | MR 2515809 | Zbl 1229.05287

[22] Ivanov, Vladimir Nikolaevich Interpolation analogues of Schur Q-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 307 (2004) no. 10, p. 99-119, 281–282 | Article | MR 2050689

[23] Kawanaka, Noriaki A q-series identity involving Schur functions and related topics, Osaka J. Math., Volume 36 (1999) no. 1, pp. 157-176 | MR 1670687 | Zbl 0915.05008

[24] Kenyon, Richard Lectures on dimers, Statistical mechanics, Amer. Math. Soc., Providence, RI (IAS/Park City Math. Ser.) Volume 16 (2009), pp. 191-230 | Article | MR 2523460 | Zbl 1180.82001

[25] Kenyon, Richard; Okounkov, Andrei Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | Article | MR 2358053 | Zbl 1156.14029

[26] Kenyon, Richard; Okounkov, Andrei; Sheffield, Scott Dimers and amoebae, Ann. of Math. (2), Volume 163 (2006) no. 3, pp. 1019-1056 | Article | MR 2215138 | Zbl 1154.82007

[27] Kim, Jang Soo; Oh, Suho The Selberg integral and Young books, J. Combin. Theory Ser. A, Volume 145 (2017), pp. 1-24 | Article | MR 3551643 | Zbl 1355.05268

[28] Kim, Jang Soo; Okada, Soichi A new q-Selberg integral, Schur functions, and Young books, Ramanujan J., Volume 42 (2017) no. 1, pp. 43-57 | Article | MR 3591407 | Zbl 1362.05132

[29] Kim, Jang Soo; Yoo, Meesue Product formulas for certain skew tableaux (2018) (https://arxiv.org/abs/1806.01525 )

[30] Kitaev, Sergey Patterns in permutations and words, Springer, Heidelberg, Monographs in Theoretical Computer Science. An EATCS Series (2011), xxii+494 pages (With a foreword by Jeffrey B. Remmel) | Article | MR 3012380 | Zbl 1257.68007

[31] Knutson, Allen; Miller, Ezra; Yong, Alexander Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., Volume 630 (2009), pp. 1-31 | Article | MR 2526784 | Zbl 1169.14033

[32] Knutson, Allen; Tao, Terence Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J., Volume 119 (2003) no. 2, pp. 221-260 | Article | MR 1997946 | Zbl 1064.14063

[33] Krattenthaler, Christian Generating functions for plane partitions of a given shape, Manuscripta Math., Volume 69 (1990) no. 2, pp. 173-201 | Article | MR 1072987 | Zbl 0726.05007

[34] Krattenthaler, Christian Advanced determinant calculus, Sém. Lothar. Combin., Volume 42 (1999), B42q, 67 pages | MR 1701596 | Zbl 0923.05007

[35] Krattenthaler, Christian Advanced determinant calculus: a complement, Linear Algebra Appl., Volume 411 (2005), pp. 68-166 | Article | MR 2178686 | Zbl 1079.05008

[36] Krattenthaler, Christian; Schlosser, Michael J. The major index generating function of standard Young tableaux of shapes of the form “staircase minus rectangle”, Ramanujan 125, Amer. Math. Soc., Providence, RI (Contemp. Math.) Volume 627 (2014), pp. 111-122 | Article | MR 3307495 | Zbl 1306.05009

[37] Kreiman, Victor Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian (2005) (https://arxiv.org/abs/math/0512204 )

[38] Kuperberg, Greg Another proof of the alternating-sign matrix conjecture, Internat. Math. Res. Notices (1996) no. 3, pp. 139-150 | Article | MR 1383754 | Zbl 0859.05027

[39] Kuperberg, Greg Symmetry classes of alternating-sign matrices under one roof, Ann. of Math. (2), Volume 156 (2002) no. 3, pp. 835-866 | Article | MR 1954236 | Zbl 1010.05014

[40] Lai, Tri Enumeration of tilings of quasi-hexagons, hexagonal dungeons, quartered hexagons, and variants of the Aztec diamond, Indiana University (USA) (2014), 217 pages (Ph. D. Thesis) | MR 3279090

[41] Lai, Tri A q-enumeration of lozenge tilings of a hexagon with three dents, Adv. in Appl. Math., Volume 82 (2017), pp. 23-57 | Article | MR 3566085 | Zbl 1348.05022

[42] Lakshmibai, Venkatramani; Raghavan, Komaranapuram N.; Sankaran, Parameswaran Equivariant Giambelli and determinantal restriction formulas for the Grassmannian, Pure Appl. Math. Q., Volume 2 (2006) no. 3, pp. 699-717 (Special Issue: In honor of Robert D. MacPherson. Part 1) | Article | MR 2252114

[43] Lascoux, Alain Polynomials (2013) (monograph draft, http://www-igm.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf) | Zbl 0725.12001

[44] Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR 660739 | Zbl 0495.14031

[45] Lascoux, Alain; Schützenberger, Marcel-Paul Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR 686357 | Zbl 0542.14030

[46] Macdonald, Ian Grant Notes on Schubert polynomials, LaCIM, UQAM (1991)

[47] Manivel, Laurent Symmetric functions, Schubert polynomials and degeneracy loci, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, SMF/AMS Texts and Monographs, Volume 6 (2001), viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | MR 1852463 | Zbl 0998.14023

[48] Merzon, Grigory; Smirnov, Evgeny Determinantal identities for flagged Schur and Schubert polynomials, Eur. J. Math., Volume 2 (2016) no. 1, pp. 227-245 | Article | MR 3454099 | Zbl 1331.05223

[49] Molev, Alexander I.; Sagan, Bruce E. A Littlewood–Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc., Volume 351 (1999) no. 11, pp. 4429-4443 | Article | MR 1621694 | Zbl 0972.05053

[50] Morales, Alejandro H.; Hamaker, Zach; Pak, Igor; Serrano, Luis G. (in preparation)

[51] Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes IV. Increasing tableaux and factorial Grothendieck polynomials (in preparation)

[52] Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications, SIAM J. Discrete Math., Volume 31 (2017) no. 3, pp. 1953-1989 | Article | MR 3693598 | Zbl 1370.05007

[53] Morales, Alejandro H.; Pak, Igor; Panova, Greta Asymptotics of the number of standard Young tableaux of skew shape, European J. Combin., Volume 70 (2018), pp. 26-49 | Article | MR 3779602 | Zbl 1384.05175

[54] Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes I. q-analogues and bijections, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 350-405 | Article | MR 3718070 | Zbl 1373.05026

[55] Morales, Alejandro H.; Pak, Igor; Panova, Greta Asymptotics of principal evaluations of Schubert polynomials for layered permutations, Proc. Amer. Math. Soc., Volume 147 (2019) no. 4, pp. 1377-1389 | Article | MR 3910405 | Zbl 1405.05003

[56] Morales, Alejandro H.; Pak, Igor; Tassy, Martin Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings (2018) (https://arxiv.org/abs/1805.00992 )

[57] Naruse, Hiroshi Schubert calculus and hook formula (2014) (talk at 73rd Sém. Lothar. Combin., Strobl, Austria; slides available at https://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf)

[58] Naruse, Hiroshi; Okada, Soichi Skew hook formula for d-complete posets (2018) (https://arxiv.org/abs/1802.09748 ) | Zbl 07089136

[59] Novelli, Jean-Christophe; Pak, Igor; Stoyanovskii, Alexander V. A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci., Volume 1 (1997) no. 1, pp. 53-67 | MR 1605030 | Zbl 0934.05125

[60] Pak, Igor Tile invariants: new horizons, Theoret. Comput. Sci., Volume 303 (2003) no. 2-3, pp. 303-331 (Tilings of the plane) | Article | MR 1990769 | Zbl 1052.68094

[61] Panova, Greta Tableaux and plane partitions of truncated shapes, Adv. Appl. Math., Volume 49 (2012) no. 3-5, pp. 196-217 | Article | MR 3017956 | Zbl 1252.05217

[62] Petrov, Leonid Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, Volume 160 (2014) no. 3-4, pp. 429-487 | Article | MR 3278913 | Zbl 1315.60013

[63] Proctor, Robert A. New symmetric plane partition identities from invariant theory work of De Concini and Procesi, European J. Combin., Volume 11 (1990) no. 3, pp. 289-300 | Article | MR 1059559 | Zbl 0726.05008

[64] Romik, Dan Arctic circles, domino tilings and square Young tableaux, Ann. Probab., Volume 40 (2012) no. 2, pp. 611-647 | Article | MR 2952086 | Zbl 1258.60014

[65] Rota, Gian-Carlo Ten lessons I wish I had been taught, Indiscrete thoughts, Birkhäuser (1997), pp. 195-203 | Article

[66] Sagan, Bruce On selecting a random shifted Young tableau, J. Algorithms, Volume 1 (1980) no. 3, pp. 213-234 | Article | MR 604864 | Zbl 0468.05008

[67] Sagan, Bruce The symmetric group, Springer-Verlag, New York, Graduate Texts in Mathematics, Volume 203 (2001), xvi+238 pages (Representations, combinatorial algorithms, and symmetric functions) | Article | MR 1824028 | Zbl 0964.05070

[68] Sage-Combinat Community Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2017), P16 (https://wiki.sagemath.org/combinat ) | MR 2880647

[69] Serrano, Luis G.; Stump, Christian Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials, Electron. J. Combin., Volume 19 (2012) no. 1, P16, 18 pages | MR 2880647 | Zbl 1244.05239

[70] Sloane, Neil James Alexander The Online Encyclopedia of Integer Sequences (https://oeis.org/ ) | Article | MR 1018650

[71] Stanley, Richard P. Plane partitions: past, present, and future, Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985), New York Acad. Sci., New York (Ann. New York Acad. Sci.) Volume 555 (1989), pp. 397-401 | Article | MR 1018650 | Zbl 0712.05058

[72] Stanley, Richard P. Enumerative Combinatorics, Cambridge University Press Volume 2 (1999) | Article | MR 2757798 | Zbl 0928.05001

[73] Stanley, Richard P. A survey of alternating permutations, Combinatorics and graphs, Amer. Math. Soc., Providence, RI (Contemp. Math.) Volume 531 (2010), pp. 165-196 | Article | MR 2757798 | Zbl 1231.05288

[74] Stanley, Richard P. Enumerative Combinatorics, Cambridge University Press Volume 1 (2012) | Zbl 1247.05003

[75] Stanley, Richard P. Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851 ) | Article | MR 1069389

[76] Stembridge, John R. Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math., Volume 83 (1990) no. 1, pp. 96-131 | Article | MR 1069389 | Zbl 0790.05007

[77] Thurston, William P. Groups, tilings and finite state automata, Geometry Computing Group (1989)

[78] Wachs, Michelle L. Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Theory Ser. A, Volume 40 (1985) no. 2, pp. 276-289 | Article | MR 814415 | Zbl 0579.05001

[79] Weigandt, Anna E. Schubert polynomials, 132-patterns, and Stanley’s conjecture, Algebr. Comb., Volume 1 (2018) no. 4, pp. 415-423 | MR 3875071 | Zbl 1397.05205

[80] Woo, Alexander Catalan numbers and Schubert polynomials for w=1(n+1)...2 (2004) (https://arxiv.org/abs/math/0407160 )