Promotion on oscillating and alternating tableaux and rotation of matchings and permutations
Algebraic Combinatorics, Volume 3 (2020) no. 1, p. 107-141

Using Henriques’ and Kamnitzer’s cactus groups, Schützenberger’s promotion and evacuation operators on standard Young tableaux can be generalised in a very natural way to operators acting on highest weight words in tensor products of crystals.

For the crystals corresponding to the vector representations of the symplectic groups, we show that Sundaram’s map to perfect matchings intertwines promotion and rotation of the associated chord diagrams, and evacuation and reversal. We also exhibit a map with similar features for the crystals corresponding to the adjoint representations of the general linear groups.

We prove these results by applying van Leeuwen’s generalisation of Fomin’s local rules for jeu de taquin, connected to the action of the cactus groups by Lenart, and variants of Fomin’s growth diagrams for the Robinson–Schensted correspondence.

Received : 2018-04-18
Revised : 2019-03-26
Accepted : 2019-06-03
Published online : 2020-02-12
DOI : https://doi.org/10.5802/alco.87
Classification:  05E18,  05E10
Keywords: Promotion, evacuation, cactus group
@article{ALCO_2020__3_1_107_0,
     author = {Pfannerer, Stephan and Rubey, Martin and Westbury, Bruce},
     title = {Promotion on oscillating and alternating tableaux and rotation of matchings and permutations},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {1},
     year = {2020},
     pages = {107-141},
     doi = {10.5802/alco.87},
     language = {en},
     url = {https://alco.centre-mersenne.org/item/ALCO_2020__3_1_107_0}
}
Pfannerer, Stephan; Rubey, Martin; Westbury, Bruce. Promotion on oscillating and alternating tableaux and rotation of matchings and permutations. Algebraic Combinatorics, Volume 3 (2020) no. 1, pp. 107-141. doi : 10.5802/alco.87. alco.centre-mersenne.org/item/ALCO_2020__3_1_107_0/

[1] Brauer, Richard On algebras which are connected with the semisimple continuous groups, Ann. Math. (2), Volume 38 (1937) no. 4, pp. 857-872 | Article | MR 1503378 | Zbl 0017.39105

[2] Cautis, Sabin; Kamnitzer, Joel; Morrison, Scott Webs and quantum skew Howe duality, Math. Ann., Volume 360 (2014) no. 1-2, pp. 351-390 | Article | MR 3263166 | Zbl 1387.17027

[3] Chmutov, Michael; Glick, Max; Pylyavskyy, Pavlo The Berenstein-Kirillov group and cactus groups (2016) (https://arxiv.org/abs/1609.02046)

[4] Corteel, Sylvie Crossings and alignments of permutations, Adv. Appl. Math., Volume 38 (2007) no. 2, pp. 149-163 | Article | MR 2290808 (2007j:05003) | Zbl 1121.05003

[5] Devadoss, Satyan Tessellations of moduli spaces and the mosaic operad, Homotopy invariant algebraic structures (Baltimore, MD, 1998) (Contemp. Math.) Volume 239, Amer. Math. Soc., Providence, RI, 1999, pp. 91-114 | Article | MR 1718078 (2000i:18014) | Zbl 0968.32009

[6] Fomin, Sergey Schensted algorithms for dual graded graphs, J. Algebr. Comb., Volume 4 (1995) no. 1, pp. 5-45 | Article | MR 1314558 | Zbl 0817.05077

[7] Henriques, André; Kamnitzer, Joel Crystals and coboundary categories, Duke Math. J., Volume 132 (2006) no. 2, pp. 191-216 | Article | MR 2219257 (2007m:17020) | Zbl 1123.22007

[8] Jagenteufel, Judith A Sundaram type bijection for SO(3): vacillating tableaux and pairs of standard Young tableaux and orthogonal Littlewood–Richardson tableaux, Electron. J. Comb., Volume 25 (2018) no. 3, P3.50, 44 pages | MR 3875015 | Zbl 1396.05118

[9] Khovanov, Mikhail; Kuperberg, Greg Web bases for sl(3) are not dual canonical, Pac. J. Math., Volume 188 (1999) no. 1, pp. 129-153 | Article | MR 1680395 | Zbl 0929.17012

[10] Kuperberg, Greg Spiders for rank 2 Lie algebras, Commun. Math. Phys., Volume 180 (1996) no. 1, pp. 109-151 | Article | MR 1403861 (97f:17005) | Zbl 0870.17005

[11] Lenart, Cristian On the combinatorics of crystal graphs, II. The crystal commutor, Proc. Am. Math. Soc., Volume 136 (2008) no. 3, pp. 825-837 | Article | MR 2361854 (2009b:17017) | Zbl 1129.05059

[12] Lusztig, George Canonical bases arising from quantized enveloping algebras. II, Prog. Theor. Phys., Suppl. (1990) no. 102, pp. 175-201 (Common trends in mathematics and quantum field theories (Kyoto, 1990)) | Article | MR 1182165 (93g:17019) | Zbl 0776.17012

[13] Patrias, Rebecca Promotion on generalized oscillating tableaux and web rotation, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 1-28 | Article | MR 3861768 | Zbl 1400.05268

[14] Petersen, T. Kyle; Pylyavskyy, Pavlo; Rhoades, Brendon Promotion and cyclic sieving via webs, J. Algebr. Comb., Volume 30 (2009) no. 1, pp. 19-41 | Article | MR 2519848 (2010f:05188) | Zbl 1226.05260

[15] Reiner, Victor; Stanton, Dennis; White, Dennis The cyclic sieving phenomenon, J. Comb. Theory, Ser. A, Volume 108 (2004) no. 1, pp. 17-50 | Article | MR 2087303 (2005g:05014) | Zbl 1338.05012

[16] Roby, Thomas Applications and extensions of Fomin’s generalization of the Robinson-Schensted correspondence to differential posets (1991) https://dspace.mit.edu/handle/1721.1/13517 (Ph. D. Thesis) | MR 2716353

[17] Rubey, Martin; Westbury, Bruce W. A combinatorial approach to classical representation theory (2014) (https://arxiv.org/abs/1408.3592)

[18] Rubey, Martin; Westbury, Bruce W. Combinatorics of symplectic invariant tensors, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) (2015), pp. 285-296 | Zbl 1335.05232

[19] Rumer, Georg; Teller, Edward; Weyl, Hermann Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1932 (1932), pp. 499-504 | Zbl 58.0117.02

[20] Schützenberger, Marcel-Paul Quelques remarques sur une construction de Schensted, Math. Scand., Volume 12 (1963), pp. 117-128 | Article | Numdam | MR 0190017 | Zbl 0216.30202

[21] Stanley, Richard Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Volume 62, Cambridge University Press, 1999, xii+581 pages | MR 1676282 (2000k:05026) | Zbl 0928.05001

[22] Stembridge, John Rational tableaux and the tensor algebra of gl n , J. Comb. Theory, Ser. A, Volume 46 (1987) no. 1-2, pp. 79-120 | Article | MR 899903 | Zbl 0626.20030

[23] Sundaram, Sheila On the combinatorics of representations of the symplectic group (1986) https://dspace.mit.edu/handle/1721.1/15060 (Ph. D. Thesis) | MR 2941115

[24] van Leeuwen, Marc A. A. An analogue of jeu de taquin for Littelmann’s crystal paths, Sém. Lothar. Comb., Volume 41 (1998), B41b, 23 pages | MR 1661263 (99m:05163) | Zbl 0902.05079

[25] Westbury, Bruce W. Invariant tensors and the cyclic sieving phenomenon, Electron. J. Comb., Volume 23 (2016) no. 4, P4.25, 40 pages | MR 3577672 | Zbl 1351.05231

[26] White, Noah The monodromy of real Bethe vectors for the Gaudin model, J. Comb. Algebra, Volume 2 (2018) no. 3, pp. 259-300 | Article | MR 3845719 | Zbl 06946549