In this paper, we provide explicit formula for the dual Schubert polynomials of a special class of permutations using certain involution principals on RC-graphs, resolving a conjecture by Postnikov and Stanley.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.105
Keywords: Schubert polynomial, dual Schubert polynomial, Bruhat chains
Gao, Yibo 1
CC-BY 4.0
@article{ALCO_2020__3_3_593_0,
author = {Gao, Yibo},
title = {An involution on {RC-graphs} and a conjecture on dual {Schubert} polynomials by {Postnikov} and {Stanley}},
journal = {Algebraic Combinatorics},
pages = {593--602},
year = {2020},
publisher = {MathOA foundation},
volume = {3},
number = {3},
doi = {10.5802/alco.105},
zbl = {1447.14007},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.105/}
}
TY - JOUR AU - Gao, Yibo TI - An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley JO - Algebraic Combinatorics PY - 2020 SP - 593 EP - 602 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.105/ DO - 10.5802/alco.105 LA - en ID - ALCO_2020__3_3_593_0 ER -
%0 Journal Article %A Gao, Yibo %T An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley %J Algebraic Combinatorics %D 2020 %P 593-602 %V 3 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.105/ %R 10.5802/alco.105 %G en %F ALCO_2020__3_3_593_0
Gao, Yibo. An involution on RC-graphs and a conjecture on dual Schubert polynomials by Postnikov and Stanley. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 593-602. doi: 10.5802/alco.105
[1] RC-graphs and Schubert polynomials, Exp. Math., Volume 2 (1993) no. 4, pp. 257-269 | Zbl | MR | DOI
[2] Some combinatorial properties of Schubert polynomials, J. Algebr. Comb., Volume 2 (1993) no. 4, pp. 345-374 | Zbl | MR | DOI
[3] Yang–Baxter equation, symmetric functions and Grothendieck polynomials (1993) (arXiv preprint https://arxiv.org/abs/hep-th/9306005) | Zbl
[4] Schubert polynomials and the nil-Coxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | Zbl | MR | DOI
[5] Padded Schubert polynomials and weighted enumeration of Bruhat chains (2019) (arXiv preprint https://arxiv.org/abs/1905.00047) | Zbl
[6] A combinatorial duality between the weak and strong Bruhat orders, J. Comb. Theory, Ser. A, Volume 171 (2020), pp. 105-178 | Zbl | MR | DOI
[7] Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | Zbl | MR
[8] Chains in the Bruhat order, J. Algebr. Comb., Volume 29 (2009) no. 2, pp. 133-174 | Zbl | MR | DOI
[9] A weighted enumeration of maximal chains in the Bruhat order, J. Algebr. Comb., Volume 15 (2002) no. 3, pp. 291-301 | Zbl | MR | DOI
Cited by Sources: