A combinatorial approach to scattering diagrams
Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 603-636.

Scattering diagrams arose in the context of mirror symmetry, but a special class of scattering diagrams (the cluster scattering diagrams) were recently developed to prove key structural results on cluster algebras. We use the connection to cluster algebras to calculate the function attached to the limiting wall of a rank-2 cluster scattering diagram of affine type. In the skew-symmetric rank-2 affine case, this recovers a formula due to Reineke. In the same case, we show that the generating function for signed Narayana numbers appears in a role analogous to a cluster variable. In acyclic finite type, we construct cluster scattering diagrams of acyclic finite type from Cambrian fans and sortable elements, with a simple direct proof.

Received: 2018-06-14
Revised: 2019-09-03
Accepted: 2019-12-28
Published online: 2020-06-02
DOI: https://doi.org/10.5802/alco.107
Classification: 13F60,  14N35,  05E10,  05A15,  20F55
Keywords: Cluster algebra, cluster scattering diagram, root system, Narayana number, exchange matrix, Cambrian fan, broken line.
@article{ALCO_2020__3_3_603_0,
     author = {Reading, Nathan},
     title = {A combinatorial approach to scattering diagrams},
     journal = {Algebraic Combinatorics},
     publisher = {MathOA foundation},
     volume = {3},
     number = {3},
     year = {2020},
     pages = {603-636},
     doi = {10.5802/alco.107},
     language = {en},
     url = {alco.centre-mersenne.org/item/ALCO_2020__3_3_603_0/}
}
Reading, Nathan. A combinatorial approach to scattering diagrams. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 603-636. doi : 10.5802/alco.107. https://alco.centre-mersenne.org/item/ALCO_2020__3_3_603_0/

[1] Bancroft, Erin The shard intersection order on permutations (2011) (https://arxiv.org/abs/1103.1910)

[2] Baumann, Pierre; Chapoton, Frédéric; Hohlweg, Christophe; Thomas, Hugh Chains in shard intersection lattices and parabolic support posets, J. Comb., Volume 9 (2018) no. 2, pp. 309-325 | Article | MR 3763647 | Zbl 06828808

[3] Bridgeland, Tom Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom., Volume 4 (2017) no. 5, pp. 523-561 | Article | MR 3710055 | Zbl 1388.16013

[4] Çanakçı, İlke; Schiffler, Ralf Cluster algebras and continued fractions, Compos. Math., Volume 154 (2018) no. 3, pp. 565-593 | Article | MR 3778183 | Zbl 06835477

[5] Carl, Michael; Pumperla, Max; Siebert, Bernd A tropical view of Landau-Ginzburg models (2010) (http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf)

[6] Cheung, Man Wai; Gross, Mark; Muller, Greg; Musiker, Gregg; Rupel, Dylan; Stella, Salvatore; Williams, Harold The greedy basis equals the theta basis: a rank two haiku, J. Comb. Theory, Ser. A, Volume 145 (2017), pp. 150-171 | Article | MR 3551649 | Zbl 1403.13036

[7] Fock, Vladimir V.; Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 6, pp. 865-930 | Article | Numdam | MR 2567745 | Zbl 1180.53081

[8] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | Article | MR 2295199 | Zbl 1127.16023

[9] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | Article | MR 3758151 | Zbl 06836101

[10] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | Article | MR 1104219 | Zbl 0716.17022

[11] Kontsevich, Maxim; Soibelman, Yan Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008) (https://arxiv.org/abs/0811.2435) | Zbl 1248.14060

[12] Kontsevich, Maxim; Soibelman, Yan Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry (Lect. Notes Unione Mat. Ital.) Volume 15, Springer, Cham, 2014, pp. 197-308 | Article | MR 3330788 | Zbl 1326.14042

[13] Lee, Kyungyong; Li, Li; Zelevinsky, Andrei Greedy elements in rank 2 cluster algebras, Sel. Math., New Ser., Volume 20 (2014) no. 1, pp. 57-82 | Article | MR 3147413 | Zbl 1295.13031

[14] Petersen, T. Kyle On the shard intersection order of a Coxeter group, SIAM J. Discrete Math., Volume 27 (2013) no. 4, pp. 1880-1912 | Article | MR 3123822 | Zbl 1296.05211

[15] Petersen, T. Kyle Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015, xviii+456 pages (With a foreword by Richard Stanley) | Article | MR 3408615 | Zbl 1337.05001

[16] Reading, Nathan Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Univers., Volume 50 (2003) no. 2, pp. 179-205 | Article | MR 2037526 | Zbl 1092.06006

[17] Reading, Nathan The order dimension of the poset of regions in a hyperplane arrangement, J. Comb. Theory, Ser. A, Volume 104 (2003) no. 2, pp. 265-285 | Article | MR 2019275 | Zbl 1044.52010

[18] Reading, Nathan Lattice congruences of the weak order, Order, Volume 21 (2004) no. 4, pp. 315-344 | Article | MR 2209128 | Zbl 1097.20036

[19] Reading, Nathan Lattice congruences, fans and Hopf algebras, J. Comb. Theory, Ser. A, Volume 110 (2005) no. 2, pp. 237-273 | Article | MR 2142177 | Zbl 1133.20027

[20] Reading, Nathan Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | Article | MR 2258260 | Zbl 1106.20033

[21] Reading, Nathan Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 5931-5958 | Article | MR 2336311 | Zbl 1189.05022

[22] Reading, Nathan Sortable elements and Cambrian lattices, Algebra Univers., Volume 56 (2007) no. 3-4, pp. 411-437 | Article | MR 2318219 | Zbl 1184.20038

[23] Reading, Nathan Noncrossing partitions and the shard intersection order, J. Algebr. Comb., Volume 33 (2011) no. 4, pp. 483-530 | Article | MR 2781960 | Zbl 1290.05163

[24] Reading, Nathan Universal geometric cluster algebras, Math. Z., Volume 277 (2014) no. 1-2, pp. 499-547 | Article | MR 3205782 | Zbl 1328.13034

[25] Reading, Nathan Scattering Fans, Int. Math. Res. Not. (2018), rny260 | Article | Zbl 1133.20027

[26] Reading, Nathan; Speyer, David E Cambrian fans, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 2, pp. 407-447 | Article | MR 2486939 | Zbl 1213.20038

[27] Reading, Nathan; Speyer, David E Sortable elements in infinite Coxeter groups, Trans. Am. Math. Soc., Volume 363 (2011) no. 2, pp. 699-761 | Article | MR 2728584 | Zbl 1231.20036

[28] Reading, Nathan; Speyer, David E A Cambrian framework for the oriented cycle, Electron. J. Comb., Volume 22 (2015) no. 4, Paper 4.46, 21 pages | MR 3441666 | Zbl 1329.05166

[29] Reading, Nathan; Speyer, David E Combinatorial frameworks for cluster algebras, Int. Math. Res. Not. (2016) no. 1, pp. 109-173 | Article | MR 3514060 | Zbl 1330.05167

[30] Reading, Nathan; Speyer, David E Cambrian frameworks for cluster algebras of affine type, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1429-1468 | Article | MR 3729507 | Zbl 1423.13131

[31] Reading, Nathan; Stella, Salvatore An affine almost positive roots model (2017) (to appear in Journal of Combinatorial Algebra, https://arxiv.org/abs/1707.00340) | Zbl 07201620

[32] Reineke, Markus Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, Volume 9 (2010) no. 3, pp. 653-667 | Article | MR 2650811 | Zbl 1232.53072

[33] Yang, Shih-Wei; Zelevinsky, Andrei Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 855-895 | Article | MR 2452619 | Zbl 1177.16010

[34] Zhang, Grace Stable cluster variables (2016) (REU Report, http://www-users.math.umn.edu/~reiner/REU/Zhang2016.pdf)