We study the (complex) Hecke algebra of a finite simply-laced Coxeter system with independent parameters . We construct its irreducible representations and projective indecomposable representations. We obtain the quiver of this algebra and determine when it is of finite representation type. We provide decomposition formulas for induced and restricted representations between the algebra and the algebra with . Our results demonstrate an interesting combination of the representation theory of finite Coxeter groups and their 0-Hecke algebras, including a two-sided duality between the induced and restricted representations.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.108
Keywords: Hecke algebra, independent parameters, simply-laced Coxeter system, induction and restriction, duality.
Huang, Jia 1
@article{ALCO_2020__3_3_667_0, author = {Huang, Jia}, title = {Hecke algebras of simply-laced type with independent parameters}, journal = {Algebraic Combinatorics}, pages = {667--691}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.108}, zbl = {1453.20009}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.108/} }
TY - JOUR AU - Huang, Jia TI - Hecke algebras of simply-laced type with independent parameters JO - Algebraic Combinatorics PY - 2020 SP - 667 EP - 691 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.108/ DO - 10.5802/alco.108 LA - en ID - ALCO_2020__3_3_667_0 ER -
Huang, Jia. Hecke algebras of simply-laced type with independent parameters. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 667-691. doi : 10.5802/alco.108. https://alco.centre-mersenne.org/articles/10.5802/alco.108/
[1] A construction of Coxeter group representations. II, J. Algebra, Volume 306 (2006) no. 1, pp. 208-226 | DOI | MR | Zbl
[2] A unified construction of Coxeter group representations, Adv. Appl. Math., Volume 37 (2006) no. 1, pp. 31-67 | DOI | MR | Zbl
[3] Algebraic structures on Grothendieck groups of a tower of algebras, J. Algebra, Volume 321 (2009) no. 8, pp. 2068-2084 | DOI | MR | Zbl
[4] Combinatorics of Coxeter groups, Grad. Texts Math., 231, Springer, New York, 2005, xiv+363 pages | MR | Zbl
[5] Generalized quotients in Coxeter groups, Trans. Am. Math. Soc., Volume 308 (1988) no. 1, pp. 1-37 | DOI | MR | Zbl
[6] Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981, xxi+819 pages (With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication) | MR | Zbl
[7] On the representation theory of finite -trivial monoids, Sémin. Lothar. Comb., Volume 64 (2010/11), Paper no. Art. B64d, 44 pages | MR | Zbl
[8] Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., III. Ser., Volume 52 (1986) no. 1, pp. 20-52 | DOI | MR | Zbl
[9] Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | DOI | MR | Zbl
[10] Introduction to representation theory, Stud. Math. Libr., 59, American Mathematical Society, Providence, RI, 2011, viii+228 pages (With historical interludes by Slava Gerovitch) | DOI | MR | Zbl
[11] Representations of Hecke algebras at roots of unity, Algebr. Appl., 15, Springer-Verlag London, Ltd., London, 2011, xii+401 pages | DOI | MR | Zbl
[12] Iwahori-Hecke algebras of type at roots of unity, J. Algebra, Volume 215 (1999) no. 2, pp. 694-734 | DOI | MR | Zbl
[13] Hopf algebras in Combinatorics (2014) (https://arxiv.org/abs/1409.8356) | Zbl
[14] 0-Hecke algebra actions on coinvariants and flags, J. Algebr. Comb., Volume 40 (2014) no. 1, pp. 245-278 | DOI | MR | Zbl
[15] 0-Hecke algebra action on the Stanley–Reisner ring of the Boolean algebra, Ann. Comb., Volume 19 (2015) no. 2, pp. 293-323 | DOI | MR | Zbl
[16] Hecke algebras with independent parameters, J. Algebr. Comb., Volume 43 (2016) no. 3, pp. 521-551 | DOI | MR | Zbl
[17] A tableau approach to the representation theory of 0-Hecke algebras, Ann. Comb., Volume 20 (2016) no. 4, pp. 831-868 | DOI | MR | Zbl
[18] A uniform generalization of some combinatorial Hopf algebras, Algebr. Represent. Theory, Volume 20 (2017) no. 2, pp. 379-431 | DOI | MR | Zbl
[19] Reflection groups and Coxeter groups, Camb. Stud. Adv. Math., 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | DOI | MR | Zbl
[20] The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions, Algebr. Comb., Volume 2 (2019) no. 5, pp. 735-751 | DOI | MR | Zbl
[21] Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at , J. Algebr. Comb., Volume 6 (1997) no. 4, pp. 339-376 | DOI | MR | Zbl
[22] The natural quiver of an Artinian algebra, Algebr. Represent. Theory, Volume 13 (2010) no. 5, pp. 623-636 | DOI | MR | Zbl
[23] On a theorem of Benson and Curtis, J. Algebra, Volume 71 (1981) no. 2, pp. 490-498 | DOI | MR | Zbl
[24] Hecke algebras with unequal parameters, CRM Monogr. Ser., 18, American Mathematical Society, Providence, RI, 2003, vi+136 pages | MR | Zbl
[25] -Hecke algebras, J. Aust. Math. Soc., Ser. A, Volume 27 (1979) no. 3, pp. 337-357 | DOI | MR
[26] Elements of the representation theory of associative algebras. Vol. 3, Lond. Math. Soc. Stud. Texts, 72, Cambridge University Press, Cambridge, 2007, xii+456 pages (Representation-infinite tilted algebras) | MR | Zbl
[27] The on-line encyclopedia of integer sequences, Notices Am. Math. Soc., Volume 65 (2018) no. 9, pp. 1062-1074 | MR | Zbl
[28] A decomposition of the group algebra of a finite Coxeter group, J. Algebra, Volume 9 (1968), pp. 220-239 | DOI | MR
[29] Representation theory of finite monoids, Universitext, Springer, Cham, 2016, xxiv+317 pages | DOI | MR | Zbl
[30] A short derivation of the Möbius function for the Bruhat order, J. Algebr. Comb., Volume 25 (2007) no. 2, pp. 141-148 | DOI | MR | Zbl
[31] Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math., Volume 285 (2015), pp. 1025-1065 | DOI | MR | Zbl
[32] Permuted composition tableaux, 0-Hecke algebra and labeled binary trees, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 420-452 | DOI | MR | Zbl
Cited by Sources: