A crystal-like structure on shifted tableaux
Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 693-725.

We introduce coplactic raising and lowering operators E i , F i , E i , and F i on shifted skew semistandard tableaux. We show that the primed operators and unprimed operators each independently form type A Kashiwara crystals (but not Stembridge crystals) on the same underlying set and with the same weight functions. When taken together, the result is a new kind of “doubled crystal” structure that recovers the combinatorics of type B Schubert calculus: the highest-weight elements of our crystals are precisely the shifted Littlewood–Richardson tableaux, and their generating functions are the (skew) Schur Q-functions. We also give a new criterion for such tableaux to be ballot.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.110
Classification: 05E99,  05E05
Keywords: Combinatorial crystals, shifted Young tableaux, symmetric function theory, orthogonal Grassmannian.
Gillespie, Maria 1; Levinson, Jake 2; Purbhoo, Kevin 3

1. Department of Mathematics Colorado State University Fort Collins, CO, USA
2. Department of Mathematics University of Washington Seattle, WA, USA
3. Department of Combinatorics and Optimization University of Waterloo Waterloo, ON, Canada
@article{ALCO_2020__3_3_693_0,
     author = {Gillespie, Maria and Levinson, Jake and Purbhoo, Kevin},
     title = {A crystal-like structure on shifted tableaux},
     journal = {Algebraic Combinatorics},
     pages = {693--725},
     publisher = {MathOA foundation},
     volume = {3},
     number = {3},
     year = {2020},
     doi = {10.5802/alco.110},
     mrnumber = {4113603},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.110/}
}
TY  - JOUR
AU  - Gillespie, Maria
AU  - Levinson, Jake
AU  - Purbhoo, Kevin
TI  - A crystal-like structure on shifted tableaux
JO  - Algebraic Combinatorics
PY  - 2020
DA  - 2020///
SP  - 693
EP  - 725
VL  - 3
IS  - 3
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.110/
UR  - https://www.ams.org/mathscinet-getitem?mr=4113603
UR  - https://doi.org/10.5802/alco.110
DO  - 10.5802/alco.110
LA  - en
ID  - ALCO_2020__3_3_693_0
ER  - 
%0 Journal Article
%A Gillespie, Maria
%A Levinson, Jake
%A Purbhoo, Kevin
%T A crystal-like structure on shifted tableaux
%J Algebraic Combinatorics
%D 2020
%P 693-725
%V 3
%N 3
%I MathOA foundation
%U https://doi.org/10.5802/alco.110
%R 10.5802/alco.110
%G en
%F ALCO_2020__3_3_693_0
Gillespie, Maria; Levinson, Jake; Purbhoo, Kevin. A crystal-like structure on shifted tableaux. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 693-725. doi : 10.5802/alco.110. https://alco.centre-mersenne.org/articles/10.5802/alco.110/

[1] Assaf, Sami Shifted dual equivalence and Schur P-positivity, J. Comb., Volume 9 (2018) no. 2, pp. 279-308 | Article | MR 3763646 | Zbl 1378.05210

[2] Assaf, Sami; Oguz, Ezgi Kantarcı Toward a Local Characterization of Crystals for the Quantum Queer Superalgebra, Ann. Comb., Volume 24 (2020), pp. 3-46 | Article | MR 4078137 | Zbl 07181803

[3] Bump, Daniel; Schilling, Anne Crystal Bases: Representations and Combinatorics, World Scientific, 2017 | Article | Zbl 06690908

[4] Cho, Soojin A new Littlewood–Richardson rule for Schur P-functions, Trans. Am. Math. Soc., Volume 365 (2013) no. 2, pp. 939-972 | MR 2995379 | Zbl 1262.05152

[5] Choi, Seung-Il; Kwon, Jae-Hoon Crystals and Schur P-positive expansions, Electron. J. Comb., Volume 25 (2018) no. 3, Paper no. P3.7, 27 pages | MR 3829293 | Zbl 1394.17035

[6] Gillespie, Maria; Hawkes, Graham; Poh, Wencin; Schilling, Anne Characterization of queer supercrystals (2019) (https://arxiv.org/abs/1809.04647)

[7] Gillespie, Maria; Levinson, Jake Monodromy and K-theory of Schubert curves via generalized jeu de taquin, J. Algebr. Comb., Volume 45 (2017), pp. 191-243 | Article | MR 3591376 | Zbl 1355.05272

[8] Gillespie, Maria; Levinson, Jake Axioms for Shifted Tableau Crystals, Electron. J. Comb., Volume 26 (2019) no. 2, Paper no. P2.2, 38 pages | MR 3940779 | Zbl 1414.05296

[9] Gillespie, Maria; Levinson, Jake; Purbhoo, Kevin Schubert curves in the orthogonal Grassmannian (2019) (https://arxiv.org/abs/1903.01673)

[10] Grantcharov, Dimitar; Jung, Ji Hye; Kang, Seok-Jin; Kashiwara, Masaki; Kim, Myungho Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux, Trans. Am. Math. Soc., Volume 366 (2014) no. 1, pp. 457-489 | Article | MR 3118402 | Zbl 1336.17013

[11] Haiman, Mark D. Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., Volume 99 (1992) no. 1–3, pp. 79-113 | Article | MR 1158783 | Zbl 0760.05093

[12] Hiroshima, Toya 𝔮-crystal structure on primed tableaux and on signed unimodal factorizations of reduced words of type B, Publ. Res. Inst. Math. Sci., Volume 55 (2019) no. 2, pp. 369-399 | Article | MR 3941487 | Zbl 1416.05294

[13] Kashiwara, Masaki Crystalizing the q-analogue of universal enveloping algebras, Commun. Math. Phys., Volume 133 (1990) no. 2, pp. 249-260 | Article | MR 1090425 | Zbl 0724.17009

[14] Macdonald, Ian G. Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979 | Zbl 0487.20007

[15] Morse, Jennifer; Schilling, Anne Crystal approach to affine Schubert calculus, Int. Math. Res. Not., Volume 2016 (2016) no. 8, pp. 2239-2294 | Article | MR 3519114 | Zbl 1404.14057

[16] Pragacz, Piotr Algebro-geometric applications of Schur S- and Q-polynomials, Topics in invariant theory (Lect. Notes Math.), Volume 1478, Springer, 1991, pp. 130-191 Séminaire d’Algèbre Dubreil–Malliavin 1989–1990 (M.-P. Malliavin ed.) | Article | MR 1180989 | Zbl 0783.14031

[17] Sagan, Bruce E. Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Comb. Theory, Ser. A, Volume 45 (1987), pp. 62-103 | Article | MR 883894 | Zbl 0661.05010

[18] Sagan, Bruce E. The Symmetric Group, Springer, New York, 2001 | Article | Zbl 0964.05070

[19] Sage Developers SageMath, the Sage Mathematics Software System (Version 7.6), 2017 (https://www.sagemath.org)

[20] Schur, Issai Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | Zbl 42.0154.02

[21] Serrano, Luis The shifted plactic monoid, Math. Z., Volume 266 (2010), pp. 363-392 | Article | MR 2678632 | Zbl 1231.05279

[22] Shimozono, Mark Multiplying Schur Q-functions, J. Comb. Theory, Ser. A, Volume 87 (1999) no. 1, pp. 198-232 | Article | MR 1698253 | Zbl 0978.05073

[23] Stembridge, John R. Shifted tableaux and the projective representations of the symmetric group, Adv. Math., Volume 74 (1989), pp. 87-134 | Article | MR 991411 | Zbl 0677.20012

[24] Stembridge, John R. A local characterization of simply-laced crystals, Trans. Am. Math. Soc., Volume 355 (2003) no. 12, pp. 4807-4823 | Article | MR 1997585 | Zbl 1047.17007

[25] van Leeuwen, Mark A. A. The Littlewood–Richardson Rule and related combinatorics, MSJ Mem., Volume 11 (2001), pp. 95-145 | MR 1862150 | Zbl 0991.05101

[26] Worley, Dale R. A theory of shifted Young tableau (1984) (Ph. D. Thesis) | MR 2941073

Cited by Sources: