We introduce coplactic raising and lowering operators , , , and on shifted skew semistandard tableaux. We show that the primed operators and unprimed operators each independently form type A Kashiwara crystals (but not Stembridge crystals) on the same underlying set and with the same weight functions. When taken together, the result is a new kind of “doubled crystal” structure that recovers the combinatorics of type B Schubert calculus: the highest-weight elements of our crystals are precisely the shifted Littlewood–Richardson tableaux, and their generating functions are the (skew) Schur -functions. We also give a new criterion for such tableaux to be ballot.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.110
Keywords: Combinatorial crystals, shifted Young tableaux, symmetric function theory, orthogonal Grassmannian.
Gillespie, Maria 1; Levinson, Jake 2; Purbhoo, Kevin 3
@article{ALCO_2020__3_3_693_0, author = {Gillespie, Maria and Levinson, Jake and Purbhoo, Kevin}, title = {A crystal-like structure on shifted tableaux}, journal = {Algebraic Combinatorics}, pages = {693--725}, publisher = {MathOA foundation}, volume = {3}, number = {3}, year = {2020}, doi = {10.5802/alco.110}, mrnumber = {4113603}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.110/} }
TY - JOUR AU - Gillespie, Maria AU - Levinson, Jake AU - Purbhoo, Kevin TI - A crystal-like structure on shifted tableaux JO - Algebraic Combinatorics PY - 2020 SP - 693 EP - 725 VL - 3 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.110/ DO - 10.5802/alco.110 LA - en ID - ALCO_2020__3_3_693_0 ER -
%0 Journal Article %A Gillespie, Maria %A Levinson, Jake %A Purbhoo, Kevin %T A crystal-like structure on shifted tableaux %J Algebraic Combinatorics %D 2020 %P 693-725 %V 3 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.110/ %R 10.5802/alco.110 %G en %F ALCO_2020__3_3_693_0
Gillespie, Maria; Levinson, Jake; Purbhoo, Kevin. A crystal-like structure on shifted tableaux. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 693-725. doi : 10.5802/alco.110. https://alco.centre-mersenne.org/articles/10.5802/alco.110/
[1] Shifted dual equivalence and Schur P-positivity, J. Comb., Volume 9 (2018) no. 2, pp. 279-308 | DOI | MR | Zbl
[2] Toward a Local Characterization of Crystals for the Quantum Queer Superalgebra, Ann. Comb., Volume 24 (2020), pp. 3-46 | DOI | MR | Zbl
[3] Crystal Bases: Representations and Combinatorics, World Scientific, 2017 | DOI | Zbl
[4] A new Littlewood–Richardson rule for Schur P-functions, Trans. Am. Math. Soc., Volume 365 (2013) no. 2, pp. 939-972 | MR | Zbl
[5] Crystals and Schur P-positive expansions, Electron. J. Comb., Volume 25 (2018) no. 3, Paper no. P3.7, 27 pages | MR | Zbl
[6] Characterization of queer supercrystals (2019) (https://arxiv.org/abs/1809.04647) | Zbl
[7] Monodromy and K-theory of Schubert curves via generalized jeu de taquin, J. Algebr. Comb., Volume 45 (2017), pp. 191-243 | DOI | MR | Zbl
[8] Axioms for Shifted Tableau Crystals, Electron. J. Comb., Volume 26 (2019) no. 2, Paper no. P2.2, 38 pages | MR | Zbl
[9] Schubert curves in the orthogonal Grassmannian (2019) (https://arxiv.org/abs/1903.01673)
[10] Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux, Trans. Am. Math. Soc., Volume 366 (2014) no. 1, pp. 457-489 | DOI | MR | Zbl
[11] Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., Volume 99 (1992) no. 1–3, pp. 79-113 | DOI | MR | Zbl
[12] -crystal structure on primed tableaux and on signed unimodal factorizations of reduced words of type , Publ. Res. Inst. Math. Sci., Volume 55 (2019) no. 2, pp. 369-399 | DOI | MR | Zbl
[13] Crystalizing the q-analogue of universal enveloping algebras, Commun. Math. Phys., Volume 133 (1990) no. 2, pp. 249-260 | DOI | MR | Zbl
[14] Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979 | Zbl
[15] Crystal approach to affine Schubert calculus, Int. Math. Res. Not., Volume 2016 (2016) no. 8, pp. 2239-2294 | DOI | MR | Zbl
[16] Algebro-geometric applications of Schur S- and Q-polynomials, Topics in invariant theory (Lect. Notes Math.), Volume 1478, Springer, 1991, pp. 130-191 Séminaire d’Algèbre Dubreil–Malliavin 1989–1990 (M.-P. Malliavin ed.) | DOI | MR | Zbl
[17] Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Comb. Theory, Ser. A, Volume 45 (1987), pp. 62-103 | DOI | MR | Zbl
[18] The Symmetric Group, Springer, New York, 2001 | DOI | Zbl
[19] SageMath, the Sage Mathematics Software System (Version 7.6), 2017 (https://www.sagemath.org)
[20] Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., Volume 139 (1911), pp. 155-250 | Zbl
[21] The shifted plactic monoid, Math. Z., Volume 266 (2010), pp. 363-392 | DOI | MR | Zbl
[22] Multiplying Schur Q-functions, J. Comb. Theory, Ser. A, Volume 87 (1999) no. 1, pp. 198-232 | DOI | MR | Zbl
[23] Shifted tableaux and the projective representations of the symmetric group, Adv. Math., Volume 74 (1989), pp. 87-134 | DOI | MR | Zbl
[24] A local characterization of simply-laced crystals, Trans. Am. Math. Soc., Volume 355 (2003) no. 12, pp. 4807-4823 | DOI | MR | Zbl
[25] The Littlewood–Richardson Rule and related combinatorics, MSJ Mem., Volume 11 (2001), pp. 95-145 | MR | Zbl
[26] A theory of shifted Young tableau, Ph. D. Thesis, MIT (1984) | MR
Cited by Sources: