Complex Hadamard matrices, instantaneous uniform mixing and cubes
Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 757-774.

We study the continuous-time quantum walks on graphs in the adjacency algebra of the n-cube and its related distance regular graphs.

For k2, we find graphs in the adjacency algebra of (2 k+2 -8)-cube that admit instantaneous uniform mixing at time π/2 k and graphs that have perfect state transfer at time π/2 k .

We characterize the folded n-cubes, the halved n-cubes and the folded halved n-cubes whose adjacency algebra contains a complex Hadamard matrix. We obtain the same conditions for the characterization of these graphs admitting instantaneous uniform mixing.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.112
Classification: 05E03
Keywords: Association schemes, Hamming schemes, complex Hadamard matrix, continuous-time quantum walks, instantaneous uniform mixing, perfect state transfer.

Chan, Ada 1

1 York University Dept. of Mathematics and Statistics 4700 Keele Street Toronto Ontario M3J 1P3, Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_3_757_0,
     author = {Chan, Ada},
     title = {Complex {Hadamard} matrices, instantaneous uniform mixing and cubes},
     journal = {Algebraic Combinatorics},
     pages = {757--774},
     publisher = {MathOA foundation},
     volume = {3},
     number = {3},
     year = {2020},
     doi = {10.5802/alco.112},
     zbl = {1441.05035},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.112/}
}
TY  - JOUR
AU  - Chan, Ada
TI  - Complex Hadamard matrices, instantaneous uniform mixing and cubes
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 757
EP  - 774
VL  - 3
IS  - 3
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.112/
DO  - 10.5802/alco.112
LA  - en
ID  - ALCO_2020__3_3_757_0
ER  - 
%0 Journal Article
%A Chan, Ada
%T Complex Hadamard matrices, instantaneous uniform mixing and cubes
%J Algebraic Combinatorics
%D 2020
%P 757-774
%V 3
%N 3
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.112/
%R 10.5802/alco.112
%G en
%F ALCO_2020__3_3_757_0
Chan, Ada. Complex Hadamard matrices, instantaneous uniform mixing and cubes. Algebraic Combinatorics, Volume 3 (2020) no. 3, pp. 757-774. doi : 10.5802/alco.112. https://alco.centre-mersenne.org/articles/10.5802/alco.112/

[1] Ahmadi, Amir; Belk, Ryan; Tamon, Christino; Wendler, Carolyn On mixing in continuous-time quantum walks on some circulant graphs, Quantum Inf. Comput., Volume 3 (2003) no. 6, pp. 611-618 | MR

[2] Best, Ana; Kliegl, Markus; Mead-Gluchacki, Shawn; Tamon, Christino Mixing of Quantum Walks on Generalized Hypercubes, International Journal of Quantum Information, Volume 6 (2008) no. 6, pp. 1135-1148 | DOI | Zbl

[3] Brouwer, Andries E.; Cohen, Arjeh M.; Neumaier, Arnold Distance-regular graphs, Springer-Verlag, Berlin, 1989, xviii+495 pages | MR | Zbl

[4] Cai, Tian Xin; Granville, Andrew On the residues of binomial coefficients and their products modulo prime powers, Acta Math. Sin. (Engl. Ser.), Volume 18 (2002) no. 2, pp. 277-288 | DOI | MR | Zbl

[5] Cheung, Wang-Chi; Godsil, Chris Perfect state transfer in cubelike graphs, Linear Algebra Appl., Volume 435 (2011) no. 10, pp. 2468-2474 | DOI | MR | Zbl

[6] Chihara, Laura; Stanton, Dennis Zeros of generalized Krawtchouk polynomials, J. Approx. Theory, Volume 60 (1990) no. 1, pp. 43-57 | DOI | MR | Zbl

[7] Childs, Andrew M. Universal computation by quantum walk, Phys. Rev. Lett., Volume 102 (2009) no. 18, Paper no. 180501, 4 pages | DOI | MR

[8] Christandl, Matthias; Datta, Nilanjana; Dorlas, Tony; Ekert, Artur; Kay, Alastair; Landahl, Andrew J. Perfect transfer of arbitrary states in quantum spin networks, Phys. Rev. A, Volume 71 (2005) no. 3, Paper no. 032312, 11 pages | DOI

[9] Dickson, Leonard Eugene History of the theory of numbers. Vol. I: Divisibility and primality, Chelsea Publishing Co., New York, 1966, xii+486 pages | MR | Zbl

[10] Farhi, Edward; Gutmann, Sam Quantum computation and decision trees, Phys. Rev. A (3), Volume 58 (1998) no. 2, pp. 915-928 | DOI | MR | Zbl

[11] Godsil, Chris Generalized Hamming Schemes (2010) (https://arxiv.org/abs/1011.1044)

[12] Godsil, Chris State transfer on graphs, Discrete Math., Volume 312 (2012) no. 1, pp. 129-147 | DOI | MR | Zbl

[13] Kempe, Julia Quantum random walks: an introductory overview, Contemporary Physics, Volume 44 (2003) no. 4, pp. 307-327 | DOI | Zbl

[14] Moore, Cristopher; Russell, Alexander Quantum walks on the hypercube, Randomization and approximation techniques in computer science (Lecture Notes in Comput. Sci.), Volume 2483, Springer, Berlin, 2002, pp. 164-178 | DOI | MR | Zbl

Cited by Sources: