In this paper, we discuss the toric ideals of the Minkowski sums of unit simplices. More precisely, we prove that the toric ideal of the Minkowski sum of unit simplices has a squarefree initial ideal and is generated by quadratic binomials. Moreover, we also prove that the Minkowski sums of unit simplices have the integer decomposition property. Those results are a partial contribution to Oda conjecture and Bøgvad conjecture.
Revised:
Accepted:
Published online:
Keywords: Integer decomposition property, Gröbner basis, Generalized permutohedron.
Higashitani, Akihiro 1; Ohsugi, Hidefumi 2
@article{ALCO_2020__3_4_831_0, author = {Higashitani, Akihiro and Ohsugi, Hidefumi}, title = {Toric ideals of {Minkowski} sums of unit simplices}, journal = {Algebraic Combinatorics}, pages = {831--837}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.117}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.117/} }
TY - JOUR AU - Higashitani, Akihiro AU - Ohsugi, Hidefumi TI - Toric ideals of Minkowski sums of unit simplices JO - Algebraic Combinatorics PY - 2020 SP - 831 EP - 837 VL - 3 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.117/ DO - 10.5802/alco.117 LA - en ID - ALCO_2020__3_4_831_0 ER -
%0 Journal Article %A Higashitani, Akihiro %A Ohsugi, Hidefumi %T Toric ideals of Minkowski sums of unit simplices %J Algebraic Combinatorics %D 2020 %P 831-837 %V 3 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.117/ %R 10.5802/alco.117 %G en %F ALCO_2020__3_4_831_0
Higashitani, Akihiro; Ohsugi, Hidefumi. Toric ideals of Minkowski sums of unit simplices. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 831-837. doi : 10.5802/alco.117. https://alco.centre-mersenne.org/articles/10.5802/alco.117/
[1] Gröbner bases of nested configurations, J. Algebra, Volume 320 (2008) no. 6, pp. 2583-2593 | DOI | Zbl
[2] Smooth centrally symmetric polytopes in dimension are IDP, Ann. Comb., Volume 23 (2019) no. 2, pp. 255-262 | DOI | MR | Zbl
[3] The quest for counterexamples in toric geometry, Commutative algebra and algebraic geometry (CAAG-2010) (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 17, Ramanujan Math. Soc., Mysore, 2013, pp. 45-61 | MR | Zbl
[4] Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015, xiv+518 pages | DOI | MR | Zbl
[5] Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | DOI | MR | Zbl
[6] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[7] Gröbner bases of contraction ideals, J. Algebraic Combin., Volume 36 (2012) no. 1, pp. 1-19 | DOI | MR | Zbl
[8] A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | DOI | MR | Zbl
[9] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | Zbl
[10] Cayley sums and Minkowski sums of -convex-normal lattice polytopes (2018) (https://arxiv.org/abs/1804.10538)
Cited by Sources: