Toric ideals of Minkowski sums of unit simplices
Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 831-837.

In this paper, we discuss the toric ideals of the Minkowski sums of unit simplices. More precisely, we prove that the toric ideal of the Minkowski sum of unit simplices has a squarefree initial ideal and is generated by quadratic binomials. Moreover, we also prove that the Minkowski sums of unit simplices have the integer decomposition property. Those results are a partial contribution to Oda conjecture and Bøgvad conjecture.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.117
Classification: 13P10, 52B20
Keywords: Integer decomposition property, Gröbner basis, Generalized permutohedron.

Higashitani, Akihiro 1; Ohsugi, Hidefumi 2

1 Osaka University Graduate School of Information Science and Technology Department of Pure and Applied Mathematics Suita, Osaka 565-0871, Japan
2 Kwansei Gakuin University School of Science and Technology Department of Mathematical Sciences Sanda, Hyogo 669-1337, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2020__3_4_831_0,
     author = {Higashitani, Akihiro and Ohsugi, Hidefumi},
     title = {Toric ideals of {Minkowski} sums of unit simplices},
     journal = {Algebraic Combinatorics},
     pages = {831--837},
     publisher = {MathOA foundation},
     volume = {3},
     number = {4},
     year = {2020},
     doi = {10.5802/alco.117},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.117/}
}
TY  - JOUR
AU  - Higashitani, Akihiro
AU  - Ohsugi, Hidefumi
TI  - Toric ideals of Minkowski sums of unit simplices
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 831
EP  - 837
VL  - 3
IS  - 4
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.117/
DO  - 10.5802/alco.117
LA  - en
ID  - ALCO_2020__3_4_831_0
ER  - 
%0 Journal Article
%A Higashitani, Akihiro
%A Ohsugi, Hidefumi
%T Toric ideals of Minkowski sums of unit simplices
%J Algebraic Combinatorics
%D 2020
%P 831-837
%V 3
%N 4
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.117/
%R 10.5802/alco.117
%G en
%F ALCO_2020__3_4_831_0
Higashitani, Akihiro; Ohsugi, Hidefumi. Toric ideals of Minkowski sums of unit simplices. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 831-837. doi : 10.5802/alco.117. https://alco.centre-mersenne.org/articles/10.5802/alco.117/

[1] Aoki, Satoshi; Hibi, Takayuki; Ohsugi, Hidefumi; Takemura, Akimichi Gröbner bases of nested configurations, J. Algebra, Volume 320 (2008) no. 6, pp. 2583-2593 | DOI | Zbl

[2] Beck, Matthias; Haase, Christian; Higashitani, Akihiro; Hofscheier, Johannes; Jochemko, Katharina; Katthän, Lukas; Michałek, Mateusz Smooth centrally symmetric polytopes in dimension 3 are IDP, Ann. Comb., Volume 23 (2019) no. 2, pp. 255-262 | DOI | MR | Zbl

[3] Bruns, Winfried The quest for counterexamples in toric geometry, Commutative algebra and algebraic geometry (CAAG-2010) (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 17, Ramanujan Math. Soc., Mysore, 2013, pp. 45-61 | MR | Zbl

[4] Buchstaber, Victor M.; Panov, Taras E. Toric topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015, xiv+518 pages | DOI | MR | Zbl

[5] Herzog, Jürgen; Hibi, Takayuki; Ohsugi, Hidefumi Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | DOI | MR | Zbl

[6] Postnikov, Alexander Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl

[7] Shibuta, Takafumi Gröbner bases of contraction ideals, J. Algebraic Combin., Volume 36 (2012) no. 1, pp. 1-19 | DOI | MR | Zbl

[8] Stanley, Richard P.; Pitman, Jim A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., Volume 27 (2002) no. 4, pp. 603-634 | DOI | MR | Zbl

[9] Sturmfels, Bernd Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | Zbl

[10] Tsuchiya, Akiyoshi Cayley sums and Minkowski sums of 2-convex-normal lattice polytopes (2018) (https://arxiv.org/abs/1804.10538)

Cited by Sources: