We prove that the (divisorial) gonality of a finite connected graph is lower bounded by its treewidth. Graphs for which equality holds include the grid graphs and the complete multipartite graphs. We prove that the treewidth lower bound also holds for metric graphs (tropical curves) by constructing for any positive rank divisor on a metric graph a positive rank divisor of the same degree on a subdivision of the underlying combinatorial graph. Finally, we show that the treewidth lower bound also holds for a related notion of gonality defined by Caporaso and for stable gonality as introduced by Cornelissen et al.
Revised:
Accepted:
Published online:
Keywords: Gonality, treewidth, tropical curve, metric graph.
van Dobben de Bruyn, Josse 1; Gijswijt, Dion 2
@article{ALCO_2020__3_4_941_0, author = {van Dobben de Bruyn, Josse and Gijswijt, Dion}, title = {Treewidth is a lower bound on graph~gonality}, journal = {Algebraic Combinatorics}, pages = {941--953}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.124}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.124/} }
TY - JOUR AU - van Dobben de Bruyn, Josse AU - Gijswijt, Dion TI - Treewidth is a lower bound on graph gonality JO - Algebraic Combinatorics PY - 2020 SP - 941 EP - 953 VL - 3 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.124/ DO - 10.5802/alco.124 LA - en ID - ALCO_2020__3_4_941_0 ER -
%0 Journal Article %A van Dobben de Bruyn, Josse %A Gijswijt, Dion %T Treewidth is a lower bound on graph gonality %J Algebraic Combinatorics %D 2020 %P 941-953 %V 3 %N 4 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.124/ %R 10.5802/alco.124 %G en %F ALCO_2020__3_4_941_0
van Dobben de Bruyn, Josse; Gijswijt, Dion. Treewidth is a lower bound on graph gonality. Algebraic Combinatorics, Volume 3 (2020) no. 4, pp. 941-953. doi : 10.5802/alco.124. https://alco.centre-mersenne.org/articles/10.5802/alco.124/
[1] Specialization of linear systems from curves to graphs, Algebra Number Theory, Volume 2 (2008) no. 6, pp. 613-653 (With an appendix by Brian Conrad) | DOI | MR | Zbl
[2] Riemann–Roch and Abel–Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl
[3] Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN (2009) no. 15, pp. 2914-2955 | DOI | MR | Zbl
[4] Chip-firing and the critical group of a graph, J. Algebraic Combin., Volume 9 (1999) no. 1, pp. 25-45 | DOI | MR | Zbl
[5] Chip-firing games on graphs, European J. Combin., Volume 12 (1991) no. 4, pp. 283-291 | DOI | MR | Zbl
[6] Gonality of algebraic curves and graphs, Algebraic and complex geometry (Springer Proc. Math. Stat.), Volume 71, Springer, Cham, 2014, pp. 77-108 | DOI | MR | Zbl
[7] Tropical hyperelliptic curves, J. Algebraic Combin., Volume 37 (2013) no. 2, pp. 331-359 | DOI | MR | Zbl
[8] The treewidth and pathwidth of hypercubes, Discrete Math., Volume 306 (2006) no. 3, pp. 359-365 | DOI | MR | Zbl
[9] A combinatorial Li–Yau inequality and rational points on curves, Math. Ann., Volume 361 (2015) no. 1-2, pp. 211-258 | DOI | MR | Zbl
[10] Graph theory, Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2012, xviii+436 pages | DOI | MR | Zbl
[11] Reduced divisors and gonality in finite graphs, Bachelor thesis, Leiden University (2012) https://www.math.leidenuniv.nl/scripties/BachvanDobbendeBruyn.pdf
[12] A Riemann–Roch theorem in tropical geometry, Math. Z., Volume 259 (2008) no. 1, pp. 217-230 | DOI | MR | Zbl
[13] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR | Zbl
[14] -functions for graphs, J. Geom., Volume 8 (1976) no. 1-2, pp. 171-186 | DOI | MR | Zbl
[15] Rank of divisors on tropical curves, J. Combin. Theory Ser. A, Volume 120 (2013) no. 7, pp. 1521-1538 | DOI | MR | Zbl
[16] Rank-determining sets of metric graphs, J. Combin. Theory Ser. A, Volume 118 (2011) no. 6, pp. 1775-1793 | DOI | MR | Zbl
[17] The chip-firing game, Discrete Math., Volume 302 (2005) no. 1-3, pp. 188-210 | DOI | MR | Zbl
[18] Graph minors. IV. Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B, Volume 48 (1990) no. 2, pp. 227-254 | DOI | MR | Zbl
[19] Graph searching and a min-max theorem for tree-width, J. Combin. Theory Ser. B, Volume 58 (1993) no. 1, pp. 22-33 | DOI | MR | Zbl
Cited by Sources: