We study shifted standard Young tableaux (SYT). The limiting surface of uniformly random shifted SYT of staircase shape is determined, with the integers in the SYT as heights. This implies via properties of the Edelman–Greene bijection results about random 132-avoiding sorting networks, including limit shapes for trajectories and intermediate permutations. Moreover, the expected number of adjacencies in SYT is considered. It is shown that on average each row and each column of a shifted SYT of staircase shape contains precisely one adjacency.
Revised:
Accepted:
Published online:
Keywords: Shifted standard Young tableaux, random 132-avoiding sorting networks
Linusson, Svante 1; Potka, Samu 1; Sulzgruber, Robin 1
@article{ALCO_2020__3_6_1231_0, author = {Linusson, Svante and Potka, Samu and Sulzgruber, Robin}, title = {On random shifted standard {Young} tableaux and 132-avoiding sorting networks}, journal = {Algebraic Combinatorics}, pages = {1231--1258}, publisher = {MathOA foundation}, volume = {3}, number = {6}, year = {2020}, doi = {10.5802/alco.133}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.133/} }
TY - JOUR AU - Linusson, Svante AU - Potka, Samu AU - Sulzgruber, Robin TI - On random shifted standard Young tableaux and 132-avoiding sorting networks JO - Algebraic Combinatorics PY - 2020 SP - 1231 EP - 1258 VL - 3 IS - 6 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.133/ DO - 10.5802/alco.133 LA - en ID - ALCO_2020__3_6_1231_0 ER -
%0 Journal Article %A Linusson, Svante %A Potka, Samu %A Sulzgruber, Robin %T On random shifted standard Young tableaux and 132-avoiding sorting networks %J Algebraic Combinatorics %D 2020 %P 1231-1258 %V 3 %N 6 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.133/ %R 10.5802/alco.133 %G en %F ALCO_2020__3_6_1231_0
Linusson, Svante; Potka, Samu; Sulzgruber, Robin. On random shifted standard Young tableaux and 132-avoiding sorting networks. Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1231-1258. doi : 10.5802/alco.133. https://alco.centre-mersenne.org/articles/10.5802/alco.133/
[1] Random sorting networks, Adv. Math., Volume 215 (2007) no. 2, pp. 839-868 | DOI | MR | Zbl
[2] Representations of symmetric groups and free probability, Adv. Math., Volume 138 (1998) no. 1, pp. 126-181 | DOI | MR | Zbl
[3] Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl
[4] The Archimedean limit of random sorting networks (2018) (https://arxiv.org/abs/1802.08934)
[5] Pattern-avoiding polytopes, European J. Combin., Volume 74 (2018), pp. 48-84 | DOI | MR | Zbl
[6] Balanced tableaux, Adv. in Math., Volume 63 (1987) no. 1, pp. 42-99 | DOI | MR | Zbl
[7] Arc permutations, J. Algebraic Combin., Volume 39 (2014) no. 2, pp. 301-334 | DOI | MR | Zbl
[8] A bijective proof of the hook-length formula for shifted standard tableaux (2001) (https://arxiv.org/abs/math/0112261)
[9] Chains of maximum length in the Tamari lattice, Proc. Amer. Math. Soc., Volume 142 (2014) no. 10, pp. 3343-3353 | DOI | MR | Zbl
[10] Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009, 826 pages | DOI | Zbl
[11] The hook graphs of the symmetric group, Canad. J. Math., Volume 6 (1954), pp. 316-325 | DOI | MR | Zbl
[12] Matrix correspondences and the enumeration of plane partitions, Ph. D. Thesis, MIT (1978) | MR
[13] A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math., Volume 31 (1979) no. 1, pp. 104-109 | DOI | MR | Zbl
[14] On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Ser. A, Volume 50 (1989) no. 2, pp. 196-225 | DOI | MR | Zbl
[15] Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., Volume 99 (1992) no. 1–3, pp. 79-113 | DOI | MR | Zbl
[16] Plancherel measure on shifted Young diagrams, Representation Theory, Dynamical Systems, and Asymptotic Combinatorics (Amer. Math. Soc. Transl. Ser. 2), Volume 217, Amer. Math. Soc., Providence, RI, 2006, pp. 73-86 | DOI | MR | Zbl
[17] Patterns in Permutations and Words, Monographs in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg, 2011, xxii+494 pages | DOI | Zbl
[18] Reduced decompositions in hyperoctahedral groups, C. R. Acad. Sci. Paris Sér. I Math., Volume 309 (1989) no. 16, pp. 903-907 | MR | Zbl
[19] Reduced decompositions in Weyl groups, European J. Combin., Volume 16 (1995) no. 3, pp. 293-313 | DOI | MR | Zbl
[20] Properties of the Edelman–Greene bijection, J. Comb., Volume 11 (2020) no. 2, pp. 249-273 | DOI | MR | Zbl
[21] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1995 | Zbl
[22] Random strict partitions and random shifted tableaux, Selecta Math. (N.S.), Volume 26 (2020) no. 1, Paper no. 10 | DOI | MR | Zbl
[23] Skew hook formula for -complete posets via equivariant -theory, Algebr. Comb., Volume 2 (2019) no. 4, pp. 541-571 | DOI | MR | Zbl
[24] A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci., Volume 1 (1997) no. 1, pp. 53-67 | MR | Zbl
[25] The On-Line Encyclopedia of Integer Sequences, 2020 (http://oeis.org)
[26] Skew Howe duality and random rectangular Young tableaux, Algebr. Comb., Volume 1 (2018) no. 1, pp. 81-94 | DOI | MR | Zbl
[27] Limit shapes for random square Young tableaux, Adv. in Appl. Math., Volume 38 (2007) no. 2, pp. 164-209 | DOI | MR | Zbl
[28] Dynkin diagram classification of -minuscule Bruhat lattices and of -complete posets, J. Algebraic Combin., Volume 9 (1999) no. 1, pp. 61-94 | DOI | MR | Zbl
[29] Note on the expected number of Yang–Baxter moves applicable to reduced decompositions, European J. Combin., Volume 26 (2005) no. 6, pp. 1019-1021 | DOI | MR | Zbl
[30] The Surprising Mathematics of Longest Increasing Subsequences, Institute of Mathematical Statistics Textbooks, Cambridge University Press, New York, 2015, xii+353 pages | DOI | Zbl
[31] On selecting a random shifted Young tableau, J. Algorithms, Volume 1 (1980) no. 3, pp. 213-234 | DOI | MR | Zbl
[32] Shifted tableaux, Schur -functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A, Volume 45 (1987) no. 1, pp. 62-103 | DOI | MR | Zbl
[33] The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+240 pages | DOI | Zbl
[34] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 (http://combinat.sagemath.org)
[35] SageMath, the Sage Mathematics Software System Version 9.1, 2020 (http://www.sagemath.org)
[36] Braid moves in commutation classes of the symmetric group, European J. Combin., Volume 62 (2017), pp. 15-34 | DOI | MR | Zbl
[37] Quelques remarques sur une construction de Schensted, Math. Scand., Volume 12 (1963) no. 1, pp. 117-128 | DOI | MR | Zbl
[38] Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+585 pages | DOI | MR | Zbl
[39] Promotion and evacuation, Electron. J. Combin., Volume 16 (2009) no. 2, The Björner Festschrift volume, Paper no. 9, 24 pages | DOI | MR | Zbl
[40] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[41] On the of fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 5 (1996) no. 4, pp. 353-385 | DOI | MR | Zbl
[42] The enumeration of fully commutative elements of Coxeter groups, J. Algebraic Combin., Volume 7 (1998) no. 3, pp. 291-320 | DOI | MR | Zbl
[43] On the expected number of commutations in reduced words, Australas. J. Combin., Volume 62 (2015) no. 1, pp. 147-154 | MR | Zbl
[44] A combinatorial problem, Michigan Math. J., Volume 1 (1952) no. 1, pp. 81-88 | DOI | Zbl
Cited by Sources: