Given an odd prime , we identify possible composition factors of the reduction modulo of spin irreducible representations of the covering groups of symmetric groups indexed by partitions with 2 parts and find some decomposition numbers.
Revised:
Accepted:
Published online:
Keywords: Symmetric groups, spin representations, decomposition numbers.
Morotti, Lucia 1
@article{ALCO_2020__3_6_1283_0, author = {Morotti, Lucia}, title = {Composition factors of 2-parts spin representations of symmetric groups}, journal = {Algebraic Combinatorics}, pages = {1283--1291}, publisher = {MathOA foundation}, volume = {3}, number = {6}, year = {2020}, doi = {10.5802/alco.137}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.137/} }
TY - JOUR AU - Morotti, Lucia TI - Composition factors of 2-parts spin representations of symmetric groups JO - Algebraic Combinatorics PY - 2020 SP - 1283 EP - 1291 VL - 3 IS - 6 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.137/ DO - 10.5802/alco.137 LA - en ID - ALCO_2020__3_6_1283_0 ER -
%0 Journal Article %A Morotti, Lucia %T Composition factors of 2-parts spin representations of symmetric groups %J Algebraic Combinatorics %D 2020 %P 1283-1291 %V 3 %N 6 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.137/ %R 10.5802/alco.137 %G en %F ALCO_2020__3_6_1283_0
Morotti, Lucia. Composition factors of 2-parts spin representations of symmetric groups. Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1283-1291. doi : 10.5802/alco.137. https://alco.centre-mersenne.org/articles/10.5802/alco.137/
[1] Partition identities and labels for some modular characters, Trans. Amer. Math. Soc., Volume 344 (1994), pp. 597-615 | DOI | MR | Zbl
[2] Spin modules for symmetric groups, J. London Math. Soc. (2), Volume 38 (1988), pp. 250-262 | DOI | MR | Zbl
[3] Representations of the covering groups of the symmetric groups and their combinatorics, Sém. Lothar. Combin., Volume 33 (1994), Paper no. Art. B33a, 29 pages | MR | Zbl
[4] Decomposition matrices for spin characters of symmetric groups at characteristic , J. Algebra, Volume 164 (1994) no. 1, pp. 146-172 | DOI | MR | Zbl
[5] The -blocks of the covering groups of the symmetric groups, Adv. Math., Volume 129 (1997) no. 2, pp. 261-300 | DOI | MR | Zbl
[6] Hecke–Clifford superalgebras, crystals of type and modular branching rules for , Represent. Theory, Volume 5 (2001), pp. 317-403 | DOI | MR | Zbl
[7] Projective representations of symmetric groups via Sergeev duality, Math. Z., Volume 239 (2002) no. 1, pp. 27-68 | DOI | MR | Zbl
[8] Modular representations of the supergroup . I, J. Algebra, Volume 260 (2003) no. 1, pp. 64-98 | DOI | MR | Zbl
[9] James’ regularization theorem for double covers of symmetric groups, J. Algebra, Volume 306 (2006) no. 1, pp. 128-137 | DOI | MR | Zbl
[10] Defect spin blocks of symmetric groups and canonical basis coefficients (2019) (https://arxiv.org/abs/1905.04080)
[11] On the decomposition matrices of the symmetric groups. I, J. Algebra, Volume 43 (1976) no. 1, pp. 42-44 | DOI | MR
[12] Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pages | DOI | MR | Zbl
[13] Modular branching rules for projective representations of symmetric groups and lowering operators for the supergroup , Mem. Amer. Math. Soc., Volume 220 (2012) no. 1034, p. xviii+123 | DOI | MR | Zbl
[14] -deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A, Volume 30 (1997) no. 17, pp. 6163-6176 | DOI | MR | Zbl
[15] Decomposition matrices for spin characters of symmetric groups, Proc. Roy. Soc. Edinburgh Sect. A, Volume 108 (1988), pp. 145-164 | DOI | MR | Zbl
[16] Brauer trees for the Schur cover of the symmetric group, J. Algebra, Volume 266 (2003) no. 2, pp. 427-445 | DOI | MR | Zbl
[17] Some projective representations of , J. Algebra, Volume 61 (1979) no. 1, pp. 37-57 | DOI | MR | Zbl
Cited by Sources: