We characterize the cluster variables of skew-symmetrizable cluster algebras of rank 3 by their Newton polytopes. The Newton polytope of the cluster variable is the convex hull of the set of all such that the Laurent monomial appears with nonzero coefficient in the Laurent expansion of in the cluster . We give an explicit construction of the Newton polytope in terms of the exchange matrix and the denominator vector of the cluster variable.
Along the way, we give a new proof of the fact that denominator vectors of non-initial cluster variables are non-negative in a cluster algebra of arbitrary rank.
Revised:
Accepted:
Published online:
Keywords: Newton polytopes, cluster variables
Lee, Kyungyong 1; Li, Li 2; Schiffler, Ralf 3
@article{ALCO_2020__3_6_1293_0, author = {Lee, Kyungyong and Li, Li and Schiffler, Ralf}, title = {Newton polytopes of rank 3 cluster variables}, journal = {Algebraic Combinatorics}, pages = {1293--1330}, publisher = {MathOA foundation}, volume = {3}, number = {6}, year = {2020}, doi = {10.5802/alco.141}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.141/} }
TY - JOUR AU - Lee, Kyungyong AU - Li, Li AU - Schiffler, Ralf TI - Newton polytopes of rank 3 cluster variables JO - Algebraic Combinatorics PY - 2020 SP - 1293 EP - 1330 VL - 3 IS - 6 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.141/ DO - 10.5802/alco.141 LA - en ID - ALCO_2020__3_6_1293_0 ER -
%0 Journal Article %A Lee, Kyungyong %A Li, Li %A Schiffler, Ralf %T Newton polytopes of rank 3 cluster variables %J Algebraic Combinatorics %D 2020 %P 1293-1330 %V 3 %N 6 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.141/ %R 10.5802/alco.141 %G en %F ALCO_2020__3_6_1293_0
Lee, Kyungyong; Li, Li; Schiffler, Ralf. Newton polytopes of rank 3 cluster variables. Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1293-1330. doi : 10.5802/alco.141. https://alco.centre-mersenne.org/articles/10.5802/alco.141/
[1] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl
[2] Quantum cluster algebras, Adv. Math., Volume 195 (2005) no. 2, pp. 405-455 | DOI | MR | Zbl
[3] Positivity of denominator vectors of skew-symmetric cluster algebras, J. Algebra, Volume 515 (2018), pp. 448-455 | DOI | MR | Zbl
[4] Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Volume 149 (2013) no. 10, pp. 1753-1764 | DOI | MR | Zbl
[5] The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory Ser. A, Volume 145 (2017), pp. 150-171 | DOI | MR | Zbl
[6] Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc., Volume 23 (2010) no. 3, pp. 749-790 | DOI | MR | Zbl
[7] Combinatorics of -polynomials (2019) (https://arxiv.org/abs/1909.10151)
[8] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[9] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[10] Canonical bases for cluster algebras, J. Amer. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl
[11] A formula for -Polynomials in terms of -Vectors and Stabilization of -Polynomials (2018) (https://arxiv.org/abs/1812.01910)
[12] The existence of greedy bases in rank 2 quantum cluster algebras, Adv. Math., Volume 300 (2016), pp. 360-389 | DOI | MR | Zbl
[13] Greedy elements in rank 2 cluster algebras, Selecta Math. (N.S.), Volume 20 (2014) no. 1, pp. 57-82 | DOI | MR | Zbl
[14] A combinatorial formula for rank 2 cluster variables, J. Algebraic Combin., Volume 37 (2013) no. 1, pp. 67-85 | DOI | MR | Zbl
[15] Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | DOI | MR | Zbl
[16] Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl
[17] On tropical dualities in cluster algebras, Algebraic groups and quantum groups (Contemp. Math.), Volume 565, Amer. Math. Soc., Providence, RI, 2012, pp. 217-226 | DOI | MR | Zbl
[18] Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math., Volume 227 (2011) no. 1, pp. 1-39 | DOI | MR | Zbl
Cited by Sources: