We continue the study of the nonkissing complex that was introduced by Petersen, Pylyavskyy, and Speyer and was studied lattice-theoretically by the second author. We introduce a theory of Grid–Catalan combinatorics, given the initial data of a nonkissing complex, and show how this theory parallels the well-known Coxeter–Catalan combinatorics. In particular, we present analogues of Chapoton’s -triangle, -triangle, and -triangle and give both combinatorial and lattice-theoretic interpretations of the objects defining these polynomials. In our Grid–Catalan setting, we prove that our analogue of Chapoton’s -triangle and -triangle identity holds, and we conjecture that our analogue of Chapoton’s -triangle and -triangle identity also holds.
Accepted:
Published online:
Keywords: lattice, Catalan number, Cambrian lattice, noncrossing partition, nonkissing complex
Garver, Alexander 1; McConville, Thomas 2
@article{ALCO_2020__3_6_1331_0, author = {Garver, Alexander and McConville, Thomas}, title = {Chapoton triangles for nonkissing complexes}, journal = {Algebraic Combinatorics}, pages = {1331--1363}, publisher = {MathOA foundation}, volume = {3}, number = {6}, year = {2020}, doi = {10.5802/alco.142}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.142/} }
TY - JOUR AU - Garver, Alexander AU - McConville, Thomas TI - Chapoton triangles for nonkissing complexes JO - Algebraic Combinatorics PY - 2020 SP - 1331 EP - 1363 VL - 3 IS - 6 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.142/ DO - 10.5802/alco.142 LA - en ID - ALCO_2020__3_6_1331_0 ER -
%0 Journal Article %A Garver, Alexander %A McConville, Thomas %T Chapoton triangles for nonkissing complexes %J Algebraic Combinatorics %D 2020 %P 1331-1363 %V 3 %N 6 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.142/ %R 10.5802/alco.142 %G en %F ALCO_2020__3_6_1331_0
Garver, Alexander; McConville, Thomas. Chapoton triangles for nonkissing complexes. Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1331-1363. doi : 10.5802/alco.142. https://alco.centre-mersenne.org/articles/10.5802/alco.142/
[1] Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., 202, American Mathematical Society, 2009 no. 949, x+159 pages | DOI | MR | Zbl
[2] On some enumerative aspects of generalized associahedra, European J. Combin., Volume 28 (2007) no. 4, pp. 1208-1215 | DOI | MR | Zbl
[3] The canonical join complex, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. Paper No. 1.24, 25 pages | MR | Zbl
[4] The dual braid monoid, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl
[5] Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., Volume 348 (1996) no. 4, pp. 1299-1327 | DOI | MR | Zbl
[6] Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl
[7] ’s for Artin Groups of Finite Type, Geom. Dedicata, Volume 94 (2002), pp. 225-250 | DOI | MR | Zbl
[8] Enumerative properties of generalized associahedra, Sém. Lothar. Combin., Volume 51 (2004/05), Paper no. Art. B51b, 16 pages | MR | Zbl
[9] Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006) no. 4, pp. 585-596 | DOI | MR | Zbl
[10] Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci., Volume 18 (2016) no. 3, Paper no. Paper No. 18, 30 pages | MR | Zbl
[11] Congruence normality: the characterization of the doubling class of convex sets, Algebra Universalis, Volume 31 (1994) no. 3, pp. 397-406 | DOI | MR | Zbl
[12] Introduction to Cluster Algebras Chapters 1–3 (2016) (arXiv preprint https://arxiv.org/abs/1608.05735)
[13] -systems and generalized associahedra, Ann. of Math. (2), Volume 158 (2003) no. 3, pp. 977-1018 | DOI | MR | Zbl
[14] Free lattices, Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, RI, 1995, viii+293 pages | DOI | MR | Zbl
[15] Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions, J. Combin. Theory Ser. A, Volume 158 (2018), pp. 126-175 | DOI | MR | Zbl
[16] Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969, ix+282 pages | MR | Zbl
[17] Sur les partitions non croisées d’un cycle, Discrete Math., Volume 1 (1972) no. 4, pp. 333-350 | DOI | MR | Zbl
[18] The serpent nest conjecture for accordion complexes, European J. Combin., Volume 67 (2018), pp. 230-238 | DOI | MR | Zbl
[19] Lattice structure of Grid–Tamari orders, J. Combin. Theory Ser. A, Volume 148 (2017), pp. 27-56 | DOI | MR | Zbl
[20] A non-crossing standard monomial theory, J. Algebra, Volume 324 (2010) no. 5, pp. 951-969 | DOI | MR | Zbl
[21] Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, Volume 110 (2005) no. 2, pp. 237-273 | DOI | MR | Zbl
[22] Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math., Volume 29 (2015) no. 2, pp. 736-750 | DOI | MR | Zbl
[23] Lattice theory of the poset of regions, Lattice theory: special topics and applications. Vol. 2, Birkhäuser/Springer, Cham, 2016, pp. 399-487 | MR | Zbl
[24] Noncrossing sets and a Grassmann associahedron, Forum Math. Sigma, Volume 5 (2017), Paper no. Paper No. e5, 49 pages | DOI | MR | Zbl
[25] The on-line encyclopedia of integer sequences (OEIS) A060854 | MR | Zbl
[26] Catalan numbers, Cambridge University Press, New York, 2015, viii+215 pages | DOI | MR | Zbl
[27] et al. Sage Mathematics Software (Version 7.3) (2016) (http://www.sagemath.org)
[28] On the -triangle of generalised nonnesting partitions, European J. Combin., Volume 39 (2014), pp. 244-255 | DOI | MR
Cited by Sources: