The Purity Conjecture in type C
Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1401-1416.

A collection 𝒞 of k-element subsets of {1,2,...,m} is weakly separated if for each I,J𝒞, when the integers 1,2,...,m are arranged around a circle, there is a chord separating IJ from JI. Oh, Postnikov and Speyer constructed a correspondence between weakly separated collections which are maximal by inclusion and reduced plabic graphs, a class of networks defined by Postnikov which give coordinate charts on the Grassmannian of k-planes in m-space. As a corollary, they proved Scott’s Purity Conjecture, which states that a weakly separated collection is maximal by inclusion if and only if it is maximal by size. In this note, we describe maximal weakly separated collections corresponding to symmetric plabic graphs, which give coordinate charts on the Lagrangian Grassmannian, and prove a symmetric version of the Purity Conjecture.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.145
Classification: 05C70,  05C75,  05E99
Keywords: plabic graphs, weakly separated collections, plabic tilings, symmetric plabic graphs, total positivity, Lagrangian Grassmannian.
Karpman, Rachel 1

1 Otterbein University Department of Mathematics and Actuarial Science 1 S. Grove Street Westerville OH 43081, USA
@article{ALCO_2020__3_6_1401_0,
     author = {Karpman, Rachel},
     title = {The {Purity} {Conjecture} in type $C$},
     journal = {Algebraic Combinatorics},
     pages = {1401--1416},
     publisher = {MathOA foundation},
     volume = {3},
     number = {6},
     year = {2020},
     doi = {10.5802/alco.145},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.145/}
}
TY  - JOUR
TI  - The Purity Conjecture in type $C$
JO  - Algebraic Combinatorics
PY  - 2020
DA  - 2020///
SP  - 1401
EP  - 1416
VL  - 3
IS  - 6
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.145/
UR  - https://doi.org/10.5802/alco.145
DO  - 10.5802/alco.145
LA  - en
ID  - ALCO_2020__3_6_1401_0
ER  - 
%0 Journal Article
%T The Purity Conjecture in type $C$
%J Algebraic Combinatorics
%D 2020
%P 1401-1416
%V 3
%N 6
%I MathOA foundation
%U https://doi.org/10.5802/alco.145
%R 10.5802/alco.145
%G en
%F ALCO_2020__3_6_1401_0
Karpman, Rachel. The Purity Conjecture in type $C$. Algebraic Combinatorics, Volume 3 (2020) no. 6, pp. 1401-1416. doi : 10.5802/alco.145. https://alco.centre-mersenne.org/articles/10.5802/alco.145/

[1] Karpman, Rachel Total positivity for the Lagrangian Grassmannian, Adv. in Appl. Math., Volume 98 (2018), pp. 25-76 | Article | MR: 3790008 | Zbl: 1390.05247

[2] Karpman, Rachel; Su, Yi Combinatorics of symmetric plabic graphs, J. Comb., Volume 9 (2018) no. 2, pp. 259-278 | Article | MR: 3763645 | Zbl: 1378.05033

[3] Knutson, Allen; Lam, Thomas; Speyer, David E. Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | Article | MR: 3123307 | Zbl: 1330.14086

[4] Leclerc, Bernard; Zelevinsky, Andrei Quasicommuting families of quantum Plücker coordinates, Kirillov’s seminar on representation theory (Amer. Math. Soc. Transl. Ser. 2), Volume 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85-108 | Article | MR: 1618743 | Zbl: 0894.14021

[5] Muller, Greg; Speyer, David E. The twist for positroid varieties, Proc. Lond. Math. Soc. (3), Volume 115 (2017) no. 5, pp. 1014-1071 | Article | MR: 3733558 | Zbl: 1408.14154

[6] Oh, Suho; Postnikov, Alexander; Speyer, David E. Weak separation and plabic graphs, Proc. Lond. Math. Soc. (3), Volume 110 (2015) no. 3, pp. 721-754 | Article | MR: 3342103 | Zbl: 1309.05182

[7] Postnikov, Alexander Total positivity, Grassmannians and networks (2006) (Preprint https://arxiv.org/abs/math/0609764)

[8] Scott, J. S. Quasi-commuting families of quantum minors, J. Algebra, Volume 290 (2005) no. 1, pp. 204-220 | Article | MR: 2154990 | Zbl: 1079.14058

[9] Scott, J. S. Grassmannians and Cluster Algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | Article | MR: 2205721 | Zbl: 1088.22009

Cited by Sources: