Plethysms of symmetric functions and representations of SL 2 (C)
Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 27-68.

Let λ denote the Schur functor labelled by the partition λ and let E be the natural representation of SL 2 (C). We make a systematic study of when there is an isomorphism λ Sym E μ Sym m E of representations of SL 2 (C). Generalizing earlier results of King and Manivel, we classify all such isomorphisms when λ and μ are conjugate partitions and when one of λ or μ is a rectangle. We give a complete classification when λ and μ each have at most two rows or columns or is a hook partition and a partial classification when =m. As a corollary of a more general result on Schur functors labelled by skew partitions we also determine all cases when λ Sym E is irreducible. The methods used are from representation theory and combinatorics; in particular, we make explicit the close connection with MacMahon’s enumeration of plane partitions, and prove a new q-binomial identity in this setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.150
Classification: 05E05, 05E10, 20C30, 22E46, 22E47
Keywords: Plethysm, Hermite Reciprocity, Hook Content Formula

Paget, Rowena 1; Wildon, Mark 2

1 School of Mathematics, Statistics and Actuarial Science University of Kent Canterbury CT2 7FS, UK
2 Department of Mathematics Royal Holloway University of London Egham TW20 0EX, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_1_27_0,
     author = {Paget, Rowena and Wildon, Mark},
     title = {Plethysms of symmetric functions and representations of $\protect \mathrm{SL}_2({\protect \bf C})$},
     journal = {Algebraic Combinatorics},
     pages = {27--68},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     year = {2021},
     doi = {10.5802/alco.150},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.150/}
}
TY  - JOUR
AU  - Paget, Rowena
AU  - Wildon, Mark
TI  - Plethysms of symmetric functions and representations of $\protect \mathrm{SL}_2({\protect \bf C})$
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 27
EP  - 68
VL  - 4
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.150/
DO  - 10.5802/alco.150
LA  - en
ID  - ALCO_2021__4_1_27_0
ER  - 
%0 Journal Article
%A Paget, Rowena
%A Wildon, Mark
%T Plethysms of symmetric functions and representations of $\protect \mathrm{SL}_2({\protect \bf C})$
%J Algebraic Combinatorics
%D 2021
%P 27-68
%V 4
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.150/
%R 10.5802/alco.150
%G en
%F ALCO_2021__4_1_27_0
Paget, Rowena; Wildon, Mark. Plethysms of symmetric functions and representations of $\protect \mathrm{SL}_2({\protect \bf C})$. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 27-68. doi : 10.5802/alco.150. https://alco.centre-mersenne.org/articles/10.5802/alco.150/

[1] Bowman, Chris; Paget, Rowena The uniqueness of plethystic factorisation, Trans. Amer. Math. Soc., Volume 373 (2020) no. 3, pp. 1653-1666 | DOI | MR | Zbl

[2] Brion, Michel Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math., Volume 80 (1993) no. 4, pp. 347-371 | DOI | MR | Zbl

[3] Cagliero, Leandro; Penazzi, Daniel A new generalization of Hermite’s reciprocity law, J. Algebraic Combin., Volume 43 (2016) no. 2, pp. 399-416 | DOI | MR | Zbl

[4] Cayley, Arthur An Introductory Memoir upon Quantics, Philos. Trans. Roy. Soc. Lond., Volume 144 (1854), pp. 245-258

[5] Cheung, Man-Wai; Ikenmeyer, Christian; Mkrtchyan, Sevak Symmetrizing tableaux and the 5th case of the Foulkes conjecture, J. Symbolic Comput., Volume 80 part 3 (2017), pp. 833-843 | DOI | MR | Zbl

[6] Craven, David A. Symmetric group character degrees and hook numbers, Proc. Lond. Math. Soc. (3), Volume 96 (2008) no. 1, pp. 26-50 | DOI | MR | Zbl

[7] de Boeck, Melanie; Paget, Rowena; Wildon, Mark Plethysms of symmetric functions and highest weight representations (2018) (https://arxiv.org/abs/1810.03448)

[8] Foulkes, Herbert O. Plethysm of S-functions, Philos. Trans. Roy. Soc. London. Ser. A., Volume 246 (1954), pp. 555-591 | MR | Zbl

[9] Fulmek, Markus; Krattenthaler, Christian The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. I, Ann. Comb., Volume 2 (1998) no. 1, pp. 19-41 | DOI | MR | Zbl

[10] Fulton, William Young tableaux, London Mathematical Society student texts, 35, CUP, 1997 | MR | Zbl

[11] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl

[12] Giannelli, Eugenio On the decomposition of the Foulkes module, Arch. Math. (Basel), Volume 100 (2013) no. 3, pp. 201-214 | DOI | MR | Zbl

[13] Hermite, Charles Sur la théorie des fonctions homogènes à deux indéterminées, Cambridge and Dublin Math. J., Volume 9 (1854), pp. 172-217

[14] Ikeda, Takeshi; Naruse, Hiroshi Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5193-5221 | DOI | MR | Zbl

[15] Kac, Mark Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966) no. 4, part II, pp. 1-23 | DOI | MR | Zbl

[16] King, Ronald C. Young tableaux, Schur functions and SU(2) plethysms, J. Phys. A, Volume 18 (1985) no. 13, pp. 2429-2440 | DOI | MR | Zbl

[17] Loehr, Nicholas A.; Remmel, Jeffrey B. A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl

[18] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR | Zbl

[19] MacMahon, Percy A. Memoir on the Theory of the Partition of Numbers. — Part I, Phil. Trans. Roy. Soc. Lond. A: Maths. Phys. Eng. Sci., Volume 187 (1896), pp. 619-673

[20] Manivel, Laurent An extension of the Cayley–Sylvester formula, European J. Combin., Volume 28 (2007) no. 6, pp. 1839-1842 | DOI | MR | Zbl

[21] McDowell, Eoghan Tensor products of modular representations of SL 2 (𝔽 p ) and a random walk on their indecomposable summands (2019) (https://arxiv.org/abs/1904.13263)

[22] Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes I. q-analogues and bijections, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 350-405 | DOI | MR | Zbl

[23] Naruse, Hiroshi Schubert calculus and hook formula, 2014 (http://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf)

[24] Paget, Rowena; Wildon, Mark Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, Proc. Lond. Math. Soc. (3), Volume 118 (2019) no. 5, pp. 1153-1187 | DOI | MR | Zbl

[25] Peyton Jones, Simon The Haskell 98 Language and Libraries: The Revised Report, Journal of Functional Programming, Volume 13 (2003) no. 1, pp. 0-255 (http://www.haskell.org/definition/) | MR | Zbl

[26] Springer, Tonny A. Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, Berlin-New York, 1977, iv+112 pages | MR

[27] Stanley, Richard P. Enumerative combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl

[28] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl

[29] Sylvester, James J. On the calculus of forms, otherwise the theory of invariants, Cambridge and Dublin Maths. J., Volume 9 (1854), pp. 85-103

[30] Wolfram Research, Inc. Mathematica, Version 12.0 (Champaign, IL, 2019)

[31] Wybourne, Brian G. Hermite’s reciprocity law and the angular-momentum states of equivalent particle configurations, J. Math. Phys., Volume 10 (1969), pp. 467-471 | DOI

Cited by Sources: