Higher discrete homotopy groups of graphs
Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 69-88.

This paper studies a discrete homotopy theory for graphs introduced by Barcelo et al. We prove two main results. First we show that if G is a graph containing no 3- or 4-cycles, then the nth discrete homotopy group A n (G) is trivial for all n2. Second we exhibit for each n1 a natural homomorphism ψ:A n (G) n (G), where n (G) is the nth discrete cubical singular homology group, and an infinite family of graphs G for which n (G) is nontrivial and ψ is surjective. It follows that for each n1 there are graphs G for which A n (G) is nontrivial.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.151
Classification: 05C99, 55Q99
Keywords: Discrete homotopy, discrete singular cubical homology, $A$-theory, Hurewicz theorem

Lutz, Bob 1

1 Life Cycle Engineering, Inc. 4900 S. Broad St. Philadelphia, PA 19112, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_1_69_0,
     author = {Lutz, Bob},
     title = {Higher discrete homotopy groups of graphs},
     journal = {Algebraic Combinatorics},
     pages = {69--88},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     year = {2021},
     doi = {10.5802/alco.151},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.151/}
}
TY  - JOUR
AU  - Lutz, Bob
TI  - Higher discrete homotopy groups of graphs
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 69
EP  - 88
VL  - 4
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.151/
DO  - 10.5802/alco.151
LA  - en
ID  - ALCO_2021__4_1_69_0
ER  - 
%0 Journal Article
%A Lutz, Bob
%T Higher discrete homotopy groups of graphs
%J Algebraic Combinatorics
%D 2021
%P 69-88
%V 4
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.151/
%R 10.5802/alco.151
%G en
%F ALCO_2021__4_1_69_0
Lutz, Bob. Higher discrete homotopy groups of graphs. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 69-88. doi : 10.5802/alco.151. https://alco.centre-mersenne.org/articles/10.5802/alco.151/

[1] Babson, Eric; Barcelo, Hélène; de Longueville, Mark; Laubenbacher, Reinhard Homotopy theory of graphs, J. Algebraic Combin., Volume 24 (2006) no. 1, pp. 31-44 | DOI | MR | Zbl

[2] Baillif, Mathieu; Gabard, Alexandre Manifolds: Hausdorffness versus homogeneity, Proc. Amer. Math. Soc., Volume 136 (2008) no. 3, pp. 1105-1111 | DOI | MR | Zbl

[3] Barcelo, Hélène; Capraro, Valerio; White, Jacob A. Discrete homology theory for metric spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 5, pp. 889-905 | DOI | MR | Zbl

[4] Barcelo, Hélène; Greene, Curtis; Jarrah, Abdul Salam; Welker, Volkmar Discrete cubical and path homologies of graphs, Algebr. Comb., Volume 2 (2019) no. 3, pp. 417-437 | DOI | MR | Zbl

[5] Barcelo, Hélène; Greene, Curtis; Jarrah, Abdul Salam; Welker, Volkmar On the vanishing of discrete singular cubical homology for graphs (2019) (https://arxiv.org/abs/1909.02901)

[6] Barcelo, Hélène; Kramer, Xenia; Laubenbacher, Reinhard; Weaver, Christopher Foundations of a connectivity theory for simplicial complexes, Adv. in Appl. Math., Volume 26 (2001) no. 2, pp. 97-128 | DOI | MR | Zbl

[7] Barcelo, Hélène; Laubenbacher, Reinhard Perspectives on A-homotopy theory and its applications, Discrete Math., Volume 298 (2005) no. 1-3, pp. 39-61 | DOI | MR | Zbl

[8] Barcelo, Hélène; Severs, Christopher; White, Jacob A. k-parabolic subspace arrangements, Trans. Amer. Math. Soc., Volume 363 (2011) no. 11, pp. 6063-6083 | DOI | MR | Zbl

[9] Barcelo, Hélène; Smith, Shelly The discrete fundamental group of the order complex of B n , J. Algebraic Combin., Volume 27 (2008) no. 4, pp. 399-421 | DOI | MR | Zbl

[10] Blakers, Albert L.; Massey, William S. The homotopy groups of a triad. II, Ann. of Math. (2), Volume 55 (1952), pp. 192-201 | DOI | MR | Zbl

[11] Hatcher, Allen Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pages | MR | Zbl

[12] Hurewicz, Witold Homotopie und Homologiegruppen, Proc. Akad. Wetensch. Amsterdam, Volume 38 (1935), pp. 521-528

[13] tom Dieck, Tammo Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008, xii+567 pages | DOI | MR | Zbl

Cited by Sources: