The product monomial crystal was defined by Kamnitzer, Tingley, Webster, Weekes, and Yacobi for any semisimple simply-laced Lie algebra , and depends on a collection of parameters . We show that a family of truncations of this crystal are Demazure crystals, and give a Demazure-type formula for the character of each truncation, and the crystal itself. This character formula shows that the product monomial crystal is the crystal of a generalised Demazure module, as defined by Lakshmibai, Littelmann and Magyar. In type , we show the product monomial crystal is the crystal of a generalised Schur module associated to a column-convex diagram depending on .
Revised:
Accepted:
Published online:
Keywords: Monomial crystal, generalised schur module, Demazure crystal.
Gibson, Joel 1
@article{ALCO_2021__4_2_301_0, author = {Gibson, Joel}, title = {A {Demazure} {Character} {Formula} for the {Product} {Monomial} {Crystal}}, journal = {Algebraic Combinatorics}, pages = {301--327}, publisher = {MathOA foundation}, volume = {4}, number = {2}, year = {2021}, doi = {10.5802/alco.156}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.156/} }
TY - JOUR AU - Gibson, Joel TI - A Demazure Character Formula for the Product Monomial Crystal JO - Algebraic Combinatorics PY - 2021 SP - 301 EP - 327 VL - 4 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.156/ DO - 10.5802/alco.156 LA - en ID - ALCO_2021__4_2_301_0 ER -
Gibson, Joel. A Demazure Character Formula for the Product Monomial Crystal. Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 301-327. doi : 10.5802/alco.156. https://alco.centre-mersenne.org/articles/10.5802/alco.156/
[1] Quantizations of Conical Symplectic Resolutions II: Category and Symplectic Duality (2014) (https://arxiv.org/abs/1407.0964) | Zbl
[2] Pursuing the double affine Grassmannian. I. Transversal slices via instantons on -singularities, Duke Math. J., Volume 152 (2010) no. 2, pp. 175-206 | DOI | MR | Zbl
[3] Crystal bases. Representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR | Zbl
[4] Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974) no. 1, pp. 53-88 | DOI | Numdam | MR | Zbl
[5] Level 0 monomial crystals, Nagoya Math. J., Volume 184 (2006), pp. 85-153 | DOI | MR | Zbl
[6] A decomposition theorem for Demazure crystals, J. Algebra, Volume 265 (2003) no. 2, pp. 562-578 | DOI | MR | Zbl
[7] Highest weights for truncated shifted Yangians and product monomial crystals, J. Comb. Algebra, Volume 3 (2019) no. 3, pp. 237-303 | DOI | MR | Zbl
[8] On category for affine Grassmannian slices and categorified tensor products, Proc. Lond. Math. Soc. (3), Volume 119 (2019) no. 5, pp. 1179-1233 | DOI | MR | Zbl
[9] Yangians and quantizations of slices in the affine Grassmannian, Algebra Number Theory, Volume 8 (2014) no. 4, pp. 857-893 | DOI | MR | Zbl
[10] Crystalizing the -analogue of universal enveloping algebras, Comm. Math. Phys., Volume 133 (1990) no. 2, pp. 249-260 | DOI | MR | Zbl
[11] On crystal bases of the -analogue of universal enveloping algebras, Duke Math. J., Volume 63 (1991) no. 2, pp. 465-516 | DOI | MR | Zbl
[12] The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., Volume 71 (1993) no. 3, pp. 839-858 | DOI | MR | Zbl
[13] Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | DOI | MR | Zbl
[14] Realizations of Crystals (2002) (https://arxiv.org/abs/math/0202268) | Zbl
[15] A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, Volume 13 (2009), pp. 309-347 | DOI | MR | Zbl
[16] A diagrammatic approach to categorification of quantum groups. II, Trans. Amer. Math. Soc., Volume 363 (2011) no. 5, pp. 2685-2700 | DOI | MR | Zbl
[17] Standard monomial theory for Bott–Samelson varieties, Compositio Math., Volume 130 (2002) no. 3, pp. 293-318 | DOI | MR | Zbl
[18] Borel-Weil theorem for configuration varieties and Schur modules, Adv. Math., Volume 134 (1998) no. 2, pp. 328-366 | DOI | MR | Zbl
[19] Schubert polynomials and Bott–Samelson varieties, Comment. Math. Helv., Volume 73 (1998) no. 4, pp. 603-636 | DOI | MR | Zbl
[20] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | DOI | MR | Zbl
[21] Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | DOI | MR | Zbl
[22] Percentage-avoiding, northwest shapes and peelable tableaux, J. Combin. Theory Ser. A, Volume 82 (1998) no. 1, pp. 1-73 | DOI | MR | Zbl
[23] Flagged Weyl modules for two column shapes, J. Pure Appl. Algebra, Volume 141 (1999) no. 1, pp. 59-100 | DOI | MR | Zbl
[24] 2-Kac-Moody Algebras (2008) (https://arxiv.org/abs/0812.5023) | Zbl
[25] A Quantum Mirković–Vybornov Isomorphism (2017) (https://arxiv.org/abs/1706.03841) | Zbl
Cited by Sources: