The Cayley isomorphism property for p 3 × q
Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 289-299.

For every pair of distinct primes p, q, where q>2 we prove that p 3 × q is a CI-group with respect to binary relational structures.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.154
Classification: 05C25,  05C60,  20B25
Keywords: Cayley graphs, CI property.
@article{ALCO_2021__4_2_289_0,
     author = {Somlai, G\'abor and Muzychuk, Mikhail},
     title = {The Cayley isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$},
     journal = {Algebraic Combinatorics},
     pages = {289--299},
     publisher = {MathOA foundation},
     volume = {4},
     number = {2},
     year = {2021},
     doi = {10.5802/alco.154},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.154/}
}
Somlai, Gábor; Muzychuk, Mikhail. The Cayley isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$. Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 289-299. doi : 10.5802/alco.154. https://alco.centre-mersenne.org/articles/10.5802/alco.154/

[1] Ádám, András Research problem 2-10, Journal of Combinatorial Theory, Volume 2 (1967) no. 3, p. 393 | Article

[2] Alspach, Brian; Parsons, Torrence D. Isomorphism of circulant graphs and digraphs, Discrete Math., Volume 25 (1979) no. 2, pp. 97-108 | Article | MR 523083 | Zbl 0402.05038

[3] Babai, László Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., Volume 29 (1977) no. 3-4, pp. 329-336 | Article | MR 485447

[4] Babai, László; Frankl, Péter Isomorphisms of Cayley graphs. I, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I (Colloq. Math. Soc. János Bolyai), Volume 18 (1978), pp. 35-52 | MR 519254 | Zbl 0404.05029

[5] Djoković, Dragomir Ž. Isomorphism problem for a special class of graphs, Acta Math. Acad. Sci. Hungar., Volume 21 (1970) no. 3-4, pp. 267-270 | Article | MR 294156

[6] Dobson, Edward The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p, Discrete Math., Volume 310 (2010) no. 21, pp. 2895-2909 | Article | MR 2677650 | Zbl 1230.05155

[7] Dobson, Ted Some new groups which are not CI-groups with respect to graphs, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.12, 7 pages | MR 3761926 | Zbl 1380.05201

[8] Elspas, Bernard; Turner, James Graphs with circulant adjacency matrices, J. Combinatorial Theory, Volume 9 (1970), pp. 297-307 | Article | MR 272659 | Zbl 0212.29602

[9] Evdokimov, Sergei A.; Ponomarenko, Ilya N. Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups, St. Petersbg. Math. J., Volume 24 (2013) no. 3, pp. 431-460 | Article | MR 3014128 | Zbl 1278.20002

[10] Feng, Yan-Quan; Kovács, István Elementary abelian groups of rank 5 are DCI-groups, J. Combin. Theory Ser. A, Volume 157 (2018), pp. 162-204 | Article | MR 3780411 | Zbl 1385.05038

[11] Godsil, Christopher D. On Cayley graph isomorphisms, Ars Comb., Volume 15 (1983), pp. 231-246

[12] Hirasaka, Mitsugu; Muzychuk, Mikhail An elementary abelian group of rank 4 is a CI-group, J. Combin. Theory Ser. A, Volume 94 (2001) no. 2, pp. 339-362 | Article | MR 1825792 | Zbl 1002.20030

[13] Klin, Mikhail H.; Pöschel, Reinhard The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) (Colloq. Math. Soc. János Bolyai), Volume 25, North-Holland, Amsterdam-New York, 1981, pp. 405-434 | MR 642055

[14] Kovács, István; Muzychuk, Mikhail The group p 2 × q is a CI-group, Comm. Algebra, Volume 37 (2009) no. 10, pp. 3500-3515 | Article | MR 2561859

[15] Kovács, István; Ryabov, Grigory CI-property for decomposable Schur rings over an abelian group, Algebra Colloq., Volume 26 (2019) no. 1, pp. 147-160 | Article | MR 3920552 | Zbl 1407.05247

[16] Li, Cai Heng; Lu, Zai Ping; Pálfy, PP Further restrictions on the structure of finite CI-groups, J. Algebraic Combin., Volume 26 (2007) no. 2, pp. 161-181 | Article | MR 2335710 | Zbl 1124.05045

[17] Morris, Joy Elementary proof that p 4 is a DCI-group, Discrete Math., Volume 338 (2015) no. 8, pp. 1385-1393 | Article | MR 3336107 | Zbl 1310.05116

[18] Muzychuk, Mikhail Ádám’s conjecture is true in the square-free case, J. Combin. Theory Ser. A, Volume 72 (1995) no. 1, pp. 118-134 | Article | MR 1354970 | Zbl 0833.05063

[19] Muzychuk, Mikhail On Ádám’s conjecture for circulant graphs, Discrete Math., Volume 167/168 (1997), pp. 497-510 | Article | MR 1446768 | Zbl 0877.05040

[20] Pöschel, Reinhard Untersuchungen von S-Ringen, insbesondere im Gruppenring von p-Gruppen, Math. Nachr., Volume 60 (1974), pp. 1-27 | Article | MR 367032 | Zbl 0273.20005

[21] Schur, Issai Zur Theorie der einfach transitiven Permutationsgruppen, 1933, Preußische Akademie der Wissenschaften, Berlin, 1933, pp. 598-623 | Zbl 0007.14903

[22] Somlai, Gábor Elementary abelian p-groups of rank 2p+3 are not CI-groups, J. Algebraic Combin., Volume 34 (2011) no. 3, pp. 323-335 | Article | MR 2836364 | Zbl 1294.20069

[23] Wielandt, Helmut Finite permutation groups, Academic Press, 1964, x+114 pages (reprinted 2014) | MR 0183775 | Zbl 0138.02501