We show that a chiral coset geometry constructed from a -group necessarily satisfies residual connectedness and is therefore a hypertope.
Revised:
Accepted:
Published online:
Keywords: coset geometries, hypertopes, chirality, $C^+$-groups, residual connectedness.
Leemans, Dimitri 1; Tranchida, Philippe 2
CC-BY 4.0
@article{ALCO_2021__4_3_491_0,
author = {Leemans, Dimitri and Tranchida, Philippe},
title = {On residual connectedness in chiral geometries},
journal = {Algebraic Combinatorics},
pages = {491--499},
year = {2021},
publisher = {MathOA foundation},
volume = {4},
number = {3},
doi = {10.5802/alco.162},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.162/}
}
TY - JOUR AU - Leemans, Dimitri AU - Tranchida, Philippe TI - On residual connectedness in chiral geometries JO - Algebraic Combinatorics PY - 2021 SP - 491 EP - 499 VL - 4 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.162/ DO - 10.5802/alco.162 LA - en ID - ALCO_2021__4_3_491_0 ER -
%0 Journal Article %A Leemans, Dimitri %A Tranchida, Philippe %T On residual connectedness in chiral geometries %J Algebraic Combinatorics %D 2021 %P 491-499 %V 4 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.162/ %R 10.5802/alco.162 %G en %F ALCO_2021__4_3_491_0
Leemans, Dimitri; Tranchida, Philippe. On residual connectedness in chiral geometries. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 491-499. doi: 10.5802/alco.162
[1] Diagram geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 57, Springer, Heidelberg, 2013, xiv+592 pages (Related to classical groups and buildings) | Zbl | MR | DOI
[2] Hypertopes with tetrahedral diagram, Electron. J. Combin., Volume 25 (2018) no. 3, Paper no. Paper 3.22, 21 pages | Zbl | MR
[3] Rank 4 toroidal hypertopes, Ars Math. Contemp., Volume 15 (2018) no. 1, pp. 67-79 | Zbl | MR | DOI
[4] C-groups of high rank for the symmetric groups, J. Algebra, Volume 508 (2018), pp. 196-218 | Zbl | MR | DOI
[5] Two families of locally toroidal regular 4-hypertopes arising from toroids (to appear in Contemp. Math.)
[6] Highly symmetric hypertopes, Aequationes Math., Volume 90 (2016) no. 5, pp. 1045-1067 | Zbl | MR | DOI
[7] An exploration of locally spherical regular hypertopes, Discrete Comput. Geom., Volume 64 (2020) no. 2, pp. 519-534 | Zbl | MR | DOI
[8] Existence of regular 3-hypertopes with chambers, Discrete Math., Volume 342 (2019) no. 6, pp. 1857-1863 | Zbl | MR | DOI
[9] Sur les analogues algébriques des groupes semi-simples complexes, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956 (Centre Belge de Recherches Mathématiques), Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957, pp. 261-289 | Zbl | MR
Cited by Sources: