A quasigroup is called maximally nonassociative if for we have that only if . We show that, with finitely many exceptions, there exists a maximally nonassociative quasigroup of order whenever is not of the form or for primes with .
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
Revised:
Accepted:
Published online:
Keywords: Quasigroup, maximally nonassociative, quadratic orthomorphism, idempotent.
Drápal, Aleš 1; Wanless, Ian M. 2
@article{ALCO_2021__4_3_501_0, author = {Dr\'apal, Ale\v{s} and Wanless, Ian M.}, title = {Maximally nonassociative quasigroups via quadratic orthomorphisms}, journal = {Algebraic Combinatorics}, pages = {501--515}, publisher = {MathOA foundation}, volume = {4}, number = {3}, year = {2021}, doi = {10.5802/alco.165}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.165/} }
TY - JOUR AU - Drápal, Aleš AU - Wanless, Ian M. TI - Maximally nonassociative quasigroups via quadratic orthomorphisms JO - Algebraic Combinatorics PY - 2021 SP - 501 EP - 515 VL - 4 IS - 3 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.165/ DO - 10.5802/alco.165 LA - en ID - ALCO_2021__4_3_501_0 ER -
%0 Journal Article %A Drápal, Aleš %A Wanless, Ian M. %T Maximally nonassociative quasigroups via quadratic orthomorphisms %J Algebraic Combinatorics %D 2021 %P 501-515 %V 4 %N 3 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.165/ %R 10.5802/alco.165 %G en %F ALCO_2021__4_3_501_0
Drápal, Aleš; Wanless, Ian M. Maximally nonassociative quasigroups via quadratic orthomorphisms. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 501-515. doi : 10.5802/alco.165. https://alco.centre-mersenne.org/articles/10.5802/alco.165/
[1] Maximal nonassociativity via nearfields, Finite Fields Appl., Volume 62 (2020), p. 101610, 27pp | DOI | MR | Zbl
[2] Few associative triples, isotopisms and groups, Des. Codes Cryptogr., Volume 86 (2018), pp. 555-568 | DOI | MR | Zbl
[3] High nonassociativity in order 8 and an associative index estimate, J. Combin. Des., Volume 27 (2019), pp. 205-228 | DOI | MR | Zbl
[4] Extreme nonassociativity in order nine and beyond, J. Combin. Des., Volume 28 (2020), pp. 33-48 | DOI | MR
[5] On the number of quadratic orthomorphisms that produce maximally nonassociative quasigroups (2020) (https://arxiv.org/abs/2005.11674)
[6] Orthogonal Latin squares based on groups, Developments in Mathematics, 57, Springer, Cham, 2018, xv+537 pages | DOI | MR | Zbl
[7] On quasigroups with few associative triples, Des. Codes Cryptogr., Volume 64 (2012), pp. 221-227 | DOI | MR | Zbl
[8] A note on associative triples of elements in cancellation groupoids, Comment. Math. Univ. Carolin., Volume 21 (1980), pp. 479-487 | MR | Zbl
[9] Associativity index of finite quasigroups, Glas. Mat. Ser. III, Volume 18 (1983), pp. 243-253 | MR | Zbl
[10] Maximal nonassociativity via fields, Des. Codes Cryptogr., Volume 88 (2020), pp. 2521-2530 | DOI | MR | Zbl
[11] More general exponential and character sums, Handbook of Finite Fields (Mullen, Gary L.; Panario, Daniel, eds.), CRC Press, Boca Raton FL, 2013, pp. 161-169
[12] Diagonally cyclic Latin squares, European J. Combin., Volume 25 (2004), pp. 393-413 | DOI | MR | Zbl
[13] Atomic Latin squares based on cyclotomic orthomorphisms, Electron. J. Combin., Volume 12 (2005), Paper no. R22, 23 pages | MR | Zbl
[14] Author homepage (2020) (http://users.monash.edu.au/~iwanless/data)
Cited by Sources: