The polytope algebra of generalized permutahedra
Algebraic Combinatorics, Volume 4 (2021) no. 5, pp. 909-946.

The polytope subalgebra of deformations of a zonotope can be endowed with the structure of a module over the Tits algebra of the corresponding hyperplane arrangement. We explore this construction and find relations between statistics on (signed) permutations and the module structure in the case of (type B) generalized permutahedra. In type B, the module structure surprisingly reveals that any family of generators (via signed Minkowski sums) for generalized permutahedra of type B will contain at least 2 d-1 full-dimensional polytopes. We find a generating family of simplices attaining this minimum. Finally, we prove that the relations defining the polytope algebra are compatible with the Hopf monoid structure of generalized permutahedra.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/alco.185
Classification: 05Exx,  52C35,  52Bxx,  18M80
Keywords: Polytope algebra, zonotopes, generalized permutahedra, Eulerian polynomials.
@article{ALCO_2021__4_5_909_0,
     author = {Bastidas, Jose},
     title = {The polytope algebra of generalized permutahedra},
     journal = {Algebraic Combinatorics},
     pages = {909--946},
     publisher = {MathOA foundation},
     volume = {4},
     number = {5},
     year = {2021},
     doi = {10.5802/alco.185},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.185/}
}
TY  - JOUR
AU  - Bastidas, Jose
TI  - The polytope algebra of generalized permutahedra
JO  - Algebraic Combinatorics
PY  - 2021
DA  - 2021///
SP  - 909
EP  - 946
VL  - 4
IS  - 5
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.185/
UR  - https://doi.org/10.5802/alco.185
DO  - 10.5802/alco.185
LA  - en
ID  - ALCO_2021__4_5_909_0
ER  - 
Bastidas, Jose. The polytope algebra of generalized permutahedra. Algebraic Combinatorics, Volume 4 (2021) no. 5, pp. 909-946. doi : 10.5802/alco.185. https://alco.centre-mersenne.org/articles/10.5802/alco.185/

[1] Aguiar, Marcelo; Ardila, Federico Hopf monoids and generalized permutahedra (2017) (https://arxiv.org/abs/1709.07504)

[2] Aguiar, Marcelo; Bastidas, Jose; Mahajan, Swapneel Characteristic elements for real hyperplane arrangements, Sém. Lothar. Combin., Volume 82B (2020), Paper no. R60, 12 pages | MR 4098281 | Zbl 1440.14245

[3] Aguiar, Marcelo; Mahajan, Swapneel Monoidal functors, species and Hopf algebras. With forewords by Kenneth Brown and Stephen Chase and André Joyal, CRM Monograph Series, 29, Amer. Math. Soc., Providence, RI, 2010, lii+784 pages | Article | MR 2724388

[4] Aguiar, Marcelo; Mahajan, Swapneel Hopf monoids in the category of species, Hopf algebras and tensor categories (Contemp. Math.), Volume 585, Amer. Math. Soc., Providence, RI, 2013, pp. 17-124 | Article | MR 3077234

[5] Aguiar, Marcelo; Mahajan, Swapneel Topics in hyperplane arrangements, Mathematical Surveys and Monographs, 226, Amer. Math. Soc., Providence, RI, 2017, xxiv+611 pages | Article | MR 3726871 | Zbl 1388.14146

[6] Ardila, Federico; Benedetti, Carolina; Doker, Jeffrey Matroid polytopes and their volumes, Discrete Comput. Geom., Volume 43 (2010) no. 4, pp. 841-854 | Article | MR 2610473 | Zbl 1204.52016

[7] Ardila, Federico; Castillo, Federico; Eur, Christopher; Postnikov, Alexander Coxeter submodular functions and deformations of Coxeter permutahedra, Adv. Math., Volume 365 (2020), Paper no. 107039, 36 pages | Article | MR 4064768 | Zbl 1435.05234

[8] Ardila, Federico; Sanchez, Mario Valuations and the Hopf Monoid of Generalized Permutahedra (2020) (https://arxiv.org/abs/2010.11178)

[9] Bergeron, François; Labelle, Gilbert; Leroux, Pierre Combinatorial species and tree-like structures. With a foreword by Gian-Carlo Rota, Encyclopedia of Mathematics and its Applications, 67, Cambridge University Press, Cambridge, 1998, xx+457 pages (Translated from the 1994 French original by Margaret Readdy) | MR 1629341 | Zbl 0888.05001

[10] Björner, Anders Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math., Volume 52 (1984) no. 3, pp. 173-212 | Article | MR 744856 | Zbl 0546.06001

[11] Björner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, Günter M. Oriented matroids, Encyclopedia of Mathematics and its Applications, 46, Cambridge University Press, Cambridge, 1993, xii+516 pages | MR 1226888 | Zbl 0773.52001

[12] Brenti, Francesco q-Eulerian polynomials arising from Coxeter groups, European J. Combin., Volume 15 (1994) no. 5, pp. 417-441 | Article | MR 1292954 | Zbl 0809.05012

[13] Brenti, Francesco A class of q-symmetric functions arising from plethysm. In memory of Gian-Carlo Rota, J. Combin. Theory Ser. A, Volume 91 (2000) no. 1-2, pp. 137-170 | Article | MR 1779778 | Zbl 0969.05065

[14] Castillo, Federico A pithy look at the polytope algebra, Algebraic and geometric combinatorics on lattice polytopes, World Sci. Publ., Hackensack, NJ, 2019, pp. 117-131 | MR 3971689 | Zbl 1418.14001

[15] Edmonds, Jack Submodular functions, matroids, and certain polyhedra, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) (1970), pp. 69-87 | MR 0270945 | Zbl 0268.05019

[16] Foata, Dominique Eulerian polynomials: from Euler’s time to the present, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, 2010, pp. 253-273 | Article | MR 2744266 | Zbl 1322.01007

[17] Foata, Dominique; Han, Guo-Niu Signed words and permutations. V. A sextuple distribution, Ramanujan J., Volume 19 (2009) no. 1, pp. 29-52 | Article | MR 2501235 | Zbl 1215.05012

[18] Grünbaum, Branko Convex polytopes. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003, xvi+468 pages | Article | MR 1976856 | Zbl 1024.52001

[19] Huh, June; Wang, Botong Enumeration of points, lines, planes, etc, Acta Math., Volume 218 (2017) no. 2, pp. 297-317 | Article | MR 3733101 | Zbl 1386.05021

[20] Joyal, André Une théorie combinatoire des séries formelles, Adv. in Math., Volume 42 (1981) no. 1, pp. 1-82 | Article | MR 633783 | Zbl 0491.05007

[21] McMullen, Peter The polytope algebra, Adv. Math., Volume 78 (1989) no. 1, pp. 76-130 | Article | MR 1021549 | Zbl 0686.52005

[22] McMullen, Peter On simple polytopes, Invent. Math., Volume 113 (1993) no. 2, pp. 419-444 | Article | MR 1228132 | Zbl 0803.52007

[23] McMullen, Peter Separation in the polytope algebra, Beiträge Algebra Geom., Volume 34 (1993) no. 1, pp. 15-30 | MR 1239275 | Zbl 0780.52015

[24] Padrol, Arnau; Pilaud, Vincent; Ritter, Julian Shard polytopes (2020) (https://arxiv.org/abs/2007.01008)

[25] Postnikov, Alex; Reiner, Victor; Williams, Lauren Faces of generalized permutohedra, Doc. Math., Volume 13 (2008), pp. 207-273 | MR 2520477 | Zbl 1167.05005

[26] Postnikov, Alexander Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | Article | MR 2487491 | Zbl 1162.52007

[27] Reiner, Victor Non-crossing partitions for classical reflection groups, Discrete Math., Volume 177 (1997) no. 1-3, pp. 195-222 | Article | MR 1483446 | Zbl 0892.06001

[28] Solomon, Louis The Burnside algebra of a finite group, J. Combinatorial Theory, Volume 2 (1967), pp. 603-615 | MR 214679 | Zbl 0183.03601

[29] Stanley, Richard P. Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | Article | MR 1676282

Cited by Sources: