Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality
Algebraic Combinatorics, Volume 1 (2018) no. 1, pp. 95-114.

We give an explicit presentation for each lower bound cluster algebra. Using this presentation, we show that each lower bound algebra Gröbner degenerates to the Stanley–Reisner scheme of a vertex-decomposable ball or sphere, and is thus Cohen–Macaulay. Finally, we use Stanley–Reisner combinatorics and a result of Knutson–Lam–Speyer to show that all lower bound algebras are normal.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.2
Classification: 13F60, 05E40, 13F55
Keywords: Cluster algebras, lower bound cluster algebras, combinatorial commutative algebra, Stanley–Reisner complexes

Muller, Greg 1; Rajchgot, Jenna 2; Zykoski, Bradley 3

1 University of Oklahoma
2 University of Saskatchewan
3 University of Michigan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2018__1_1_95_0,
     author = {Muller, Greg and Rajchgot, Jenna and Zykoski, Bradley},
     title = {Lower bound cluster algebras: presentations, {Cohen{\textendash}Macaulayness,} and normality},
     journal = {Algebraic Combinatorics},
     pages = {95--114},
     publisher = {MathOA foundation},
     volume = {1},
     number = {1},
     year = {2018},
     doi = {10.5802/alco.2},
     mrnumber = {3857161},
     zbl = {06882336},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.2/}
}
TY  - JOUR
AU  - Muller, Greg
AU  - Rajchgot, Jenna
AU  - Zykoski, Bradley
TI  - Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 95
EP  - 114
VL  - 1
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.2/
DO  - 10.5802/alco.2
LA  - en
ID  - ALCO_2018__1_1_95_0
ER  - 
%0 Journal Article
%A Muller, Greg
%A Rajchgot, Jenna
%A Zykoski, Bradley
%T Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality
%J Algebraic Combinatorics
%D 2018
%P 95-114
%V 1
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.2/
%R 10.5802/alco.2
%G en
%F ALCO_2018__1_1_95_0
Muller, Greg; Rajchgot, Jenna; Zykoski, Bradley. Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality. Algebraic Combinatorics, Volume 1 (2018) no. 1, pp. 95-114. doi : 10.5802/alco.2. https://alco.centre-mersenne.org/articles/10.5802/alco.2/

[1] Benito, Angélica; Muller, Greg; Rajchgot, Jenna; Smith, Karen E. Singularities of locally acyclic cluster algebras, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 913-936 | DOI | MR | Zbl

[2] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl

[3] Billera, Louis J.; Provan, J. Scott A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics (New York, 1978) (Ann. New York Acad. Sci.), Volume 319, New York Acad. Sci., New York, 1979, pp. 82-85 | MR | Zbl

[4] Björner, Anders; Wachs, Michelle L. Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl

[5] Bruns, Winfried; Conca, Aldo Groebner bases, initial ideals and initial algebras, 2003 (arXiv:math/0308102)

[6] Brüstle, Thomas; Dupont, Grégoire; Pérotin, Matthieu On maximal green sequences, Int. Math. Res. Not. (2014) no. 16, pp. 4547-4586 | DOI | MR | Zbl

[7] Eisenbud, David Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | MR | Zbl

[8] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[9] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl

[10] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 3, pp. 825-876 | DOI | Numdam | MR | Zbl

[11] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek Cluster algebras and Weil-Petersson forms, Duke Math. J., Volume 127 (2005) no. 2, pp. 291-311 | DOI | MR | Zbl

[12] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, 2014 (arXiv:1411.1394) | Zbl

[13] Knutson, Allen Frobenius splitting, point-counting, and degeneration, 2009 (arXiv:0911.4941)

[14] Knutson, Allen; Lam, Thomas; Speyer, David E. Projections of Richardson varieties, J. Reine Angew. Math., Volume 687 (2014), pp. 133-157 | DOI | MR | Zbl

[15] Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl

[16] Muller, Greg Locally acyclic cluster algebras, Adv. Math., Volume 233 (2013), pp. 207-247 | DOI | MR | Zbl

[17] Muller, Greg A=U for locally acyclic cluster algebras, SIGMA, Volume 10 (2014), Paper no. 094, 8 pages | DOI | MR | Zbl

[18] Muller, Greg The existence of a maximal green sequence is not invariant under quiver mutation, 2015 (arXiv:1503.04675) | Zbl

[19] Munkres, James R. Topological results in combinatorics, Michigan Math. J., Volume 31 (1984) no. 1, pp. 113-128 | DOI | MR | Zbl

[20] Scott, J. S. Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl

Cited by Sources: