We prove that an inclusion-exclusion inspired expression of Schubert polynomials of permutations that avoid the patterns and is nonnegative. Our theorem implies a partial affirmative answer to a recent conjecture of Yibo Gao about principal specializations of Schubert polynomials. We propose a general framework for finding inclusion-exclusion inspired expression of Schubert polynomials of all permutations.
Revised:
Accepted:
Published online:
Keywords: Schubert polynomial, principal specialization, nonnegative linear combination.
Mészáros, Karola 1; Tanjaya, Arthur 2
@article{ALCO_2022__5_2_209_0, author = {M\'esz\'aros, Karola and Tanjaya, Arthur}, title = {Inclusion-exclusion on {Schubert} polynomials}, journal = {Algebraic Combinatorics}, pages = {209--226}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.200}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.200/} }
TY - JOUR AU - Mészáros, Karola AU - Tanjaya, Arthur TI - Inclusion-exclusion on Schubert polynomials JO - Algebraic Combinatorics PY - 2022 SP - 209 EP - 226 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.200/ DO - 10.5802/alco.200 LA - en ID - ALCO_2022__5_2_209_0 ER -
%0 Journal Article %A Mészáros, Karola %A Tanjaya, Arthur %T Inclusion-exclusion on Schubert polynomials %J Algebraic Combinatorics %D 2022 %P 209-226 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.200/ %R 10.5802/alco.200 %G en %F ALCO_2022__5_2_209_0
Mészáros, Karola; Tanjaya, Arthur. Inclusion-exclusion on Schubert polynomials. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 209-226. doi : 10.5802/alco.200. https://alco.centre-mersenne.org/articles/10.5802/alco.200/
[1] RC-graphs and Schubert polynomials, Experiment. Math., Volume 2 (1993) no. 4, pp. 257-269 | DOI | MR | Zbl
[2] A bijective proof of Macdonald’s reduced word formula, Algebr. Comb., Volume 2 (2019) no. 2, pp. 217-248 | DOI | Numdam | MR | Zbl
[3] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[4] Upper Bounds of Schubert Polynomials, Sci. China Math. (2021) | DOI
[5] Schubert polynomials as integer point transforms of generalized permutahedra, Adv. Math., Volume 332 (2018), pp. 465-475 | DOI | MR | Zbl
[6] Zero-one Schubert polynomials, Math. Z., Volume 297 (2021) no. 3-4, pp. 1023-1042 | DOI | MR | Zbl
[7] The Yang–Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993) | DOI | MR | Zbl
[8] Reduced words and plane partitions, J. Algebraic Combin., Volume 6 (1997) no. 4, pp. 311-319 | DOI | MR | Zbl
[9] Schubert polynomials and the nilCoxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | DOI | MR | Zbl
[10] Principal specializations of Schubert polynomials and pattern containment, European J. Combin., Volume 94 (2021), Paper no. 103291, 12 pages | DOI | MR | Zbl
[11] Logarithmic concavity of Schur and related polynomials, Trans. Am. Math. Soc. (2022) (https://doi.org/10.1090/tran/8606)
[12] Gröbner geometry of Schubert polynomials, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1245-1318 | DOI | MR | Zbl
[13] Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 304 (1987) no. 9, pp. 209-211 | MR | Zbl
[14] Back stable Schubert calculus, Compos. Math., Volume 157 (2021) no. 5, pp. 883-962 | DOI | MR | Zbl
[15] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | DOI | MR | Zbl
[16] A unified approach to combinatorial formulas for Schubert polynomials, J. Algebraic Combin., Volume 20 (2004) no. 3, pp. 263-299 | DOI | MR | Zbl
[17] Notes on Schubert polynomials, Publ. LaCIM, UQAM, Montréal, 1991
[18] Schubert polynomials and Bott–Samelson varieties, Comment. Math. Helv., Volume 73 (1998) no. 4, pp. 603-636 | DOI | MR | Zbl
[19] Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, viii+167 pages (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | MR | Zbl
[20] Newton polytopes in algebraic combinatorics, Selecta Math. (N.S.), Volume 25 (2019) no. 5, Paper no. 66, 37 pages | DOI | MR | Zbl
[21] Asymptotics of principal evaluations of Schubert polynomials for layered permutations, Proc. Amer. Math. Soc., Volume 147 (2019) no. 4, pp. 1377-1389 | DOI | MR | Zbl
[22] Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | DOI | MR | Zbl
[23] Some Schubert shenanigans (2017) (https://arxiv.org/abs/1704.00851)
[24] The prism tableau model for Schubert polynomials, J. Combin. Theory Ser. A, Volume 154 (2018), pp. 551-582 | DOI | MR | Zbl
[25] Schubert polynomials, 132-patterns, and Stanley’s conjecture, Algebr. Comb., Volume 1 (2018) no. 4, pp. 415-423 | DOI | Numdam | MR | Zbl
Cited by Sources: