The Lalanne–Kreweras involution is an involution on the set of Dyck paths which combinatorially exhibits the symmetry of the number of valleys and major index statistics. We define piecewise-linear and birational extensions of the Lalanne–Kreweras involution. Actually, we show that the Lalanne–Kreweras involution is a special case of a more general operator, called rowvacuation, which acts on the antichains of any graded poset. Rowvacuation, like the closely related and more studied rowmotion operator, is a composition of toggles. We obtain the piecewise-linear and birational lifts of the Lalanne–Kreweras involution by using the piecewise-linear and birational toggles of Einstein and Propp. We show that the symmetry properties of the Lalanne–Kreweras involution extend to these piecewise-linear and birational lifts.
Revised:
Accepted:
Published online:
Keywords: Lalanne–Kreweras involution, rowvacuation, rowmotion, toggles, piecewise-linear and birational lifts, homomesy
Hopkins, Sam 1; Joseph, Michael 2
@article{ALCO_2022__5_2_227_0, author = {Hopkins, Sam and Joseph, Michael}, title = {The birational {Lalanne{\textendash}Kreweras} involution}, journal = {Algebraic Combinatorics}, pages = {227--265}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.201}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.201/} }
TY - JOUR AU - Hopkins, Sam AU - Joseph, Michael TI - The birational Lalanne–Kreweras involution JO - Algebraic Combinatorics PY - 2022 SP - 227 EP - 265 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.201/ DO - 10.5802/alco.201 LA - en ID - ALCO_2022__5_2_227_0 ER -
%0 Journal Article %A Hopkins, Sam %A Joseph, Michael %T The birational Lalanne–Kreweras involution %J Algebraic Combinatorics %D 2022 %P 227-265 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.201/ %R 10.5802/alco.201 %G en %F ALCO_2022__5_2_227_0
Hopkins, Sam; Joseph, Michael. The birational Lalanne–Kreweras involution. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 227-265. doi : 10.5802/alco.201. https://alco.centre-mersenne.org/articles/10.5802/alco.201/
[1] Rowmotion on 321-avoiding permutations, in preparation, 2021
[2] A uniform bijection between nonnesting and noncrossing partitions, Trans. Amer. Math. Soc., Volume 365 (2013) no. 8, pp. 4121-4151 | DOI | MR | Zbl
[3] Cyclic sieving of noncrossing partitions for complex reflection groups, Ann. Comb., Volume 15 (2011) no. 2, pp. 197-222 | DOI | MR | Zbl
[4] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[5] On the period of an operator, defined on antichains, ZW 24/74, Stichting Mathematisch Centrum, 1974, pp. 1-13
[6] Bijections from Dyck paths to 321-avoiding permutations revisited (2007) (https://arxiv.org/abs/0711.2684)
[7] Orbits of antichains revisited, European J. Combin., Volume 16 (1995) no. 6, pp. 545-554 | DOI | MR | Zbl
[8] The expected jaggedness of order ideals, Forum Math. Sigma, Volume 5 (2017), Paper no. e9, 27 pages | DOI | MR | Zbl
[9] Symmetry of Narayana numbers and rowvacuation of root posets, Forum Math. Sigma, Volume 9 (2021), Paper no. e53, 24 pages | DOI | MR | Zbl
[10] Homomesy via toggleability statistics (2021) (https://arxiv.org/abs/2108.13227)
[11] Noncrossing partitions, toggles, and homomesies, Electron. J. Combin., Volume 23 (2016) no. 3, Paper no. 3.52, 26 pages | DOI | MR | Zbl
[12] Combinatorial, piecewise-linear, and birational homomesy for products of two chains, Algebr. Comb., Volume 4 (2021) no. 2, pp. 201-224 | DOI | MR | Zbl
[13] Fixed points and excedances in restricted permutations, Electron. J. Combin., Volume 18 (2011) no. 2, Paper no. 29, 17 pages | MR | Zbl
[14] Iterative properties of birational rowmotion II: rectangles and triangles, Electron. J. Combin., Volume 22 (2015) no. 3, Paper no. 3.40, 49 pages | MR | Zbl
[15] Iterative properties of birational rowmotion I: generalities and skeletal posets, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. 1.33, 40 pages | MR | Zbl
[16] Some instances of homomesy among ideals of posets, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.60, 23 pages | DOI | MR | Zbl
[17] Cyclic sieving for plane partitions and symmetry, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), Paper no. 130, 40 pages | DOI | MR | Zbl
[18] Minuscule doppelgängers, the coincidental down-degree expectations property, and rowmotion, Experimental Mathematics (2020), pp. 1-29 | DOI
[19] Order polynomial product formulas and poset dynamics (2020) (https://arxiv.org/abs/2006.01568, for the AMS volume on Open Problems in Algebraic Combinatorics to accompany the 2022 OPAC conference at U. Minnesota)
[20] Antichain toggling and rowmotion, Electron. J. Combin., Volume 26 (2019) no. 1, Paper no. 1.29, 43 pages | MR | Zbl
[21] Birational and noncommutative lifts of antichain toggling and rowmotion, Algebr. Comb., Volume 3 (2020) no. 4, pp. 955-984 | DOI | MR | Zbl
[22] A birational lifting of the Stanley–Thomas word on products of two chains, Discrete Math. Theor. Comput. Sci., Volume 23 (2021) no. 1, Paper no. 17, 20 pages | MR
[23] Sur les éventails de segments, Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche, Volume 15 (1970), pp. 3-41 | Numdam
[24] Une involution sur les chemins de Dyck, European J. Combin., Volume 13 (1992) no. 6, pp. 477-487 | DOI | MR | Zbl
[25] Paths to understanding birational rowmotion on products of two chains, Algebr. Comb., Volume 2 (2019) no. 2, pp. 275-304 | DOI | Numdam | MR | Zbl
[26] Birational rowmotion and Coxeter-motion on minuscule posets, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.17, 30 pages | DOI | MR | Zbl
[27] ad-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, Volume 274 (2004) no. 2, pp. 822-846 | DOI | MR | Zbl
[28] On orbits of antichains of positive roots, European J. Combin., Volume 30 (2009) no. 2, pp. 586-594 | DOI | MR | Zbl
[29] Promotion and evacuation on standard Young tableaux of rectangle and staircase shape, Electron. J. Combin., Volume 18 (2011) no. 1, Paper no. 18, 18 pages | MR | Zbl
[30] Shifted plane partitions of trapezoidal shape, Proc. Amer. Math. Soc., Volume 89 (1983) no. 3, pp. 553-559 | DOI | MR | Zbl
[31] Odd symplectic groups, Invent. Math., Volume 92 (1988) no. 2, pp. 307-332 | DOI | MR | Zbl
[32] New symmetric plane partition identities from invariant theory work of De Concini and Procesi, European J. Combin., Volume 11 (1990) no. 3, pp. 289-300 | DOI | MR | Zbl
[33] A spectral theory for combinatorial dynamics (2021) (https://arxiv.org/abs/2105.11568)
[34] Homomesy in products of two chains, Electron. J. Combin., Volume 22 (2015) no. 3, Paper no. 3.4, 29 pages | MR | Zbl
[35] Dynamical algebraic combinatorics and the homomesy phenomenon, Recent trends in combinatorics (IMA Vol. Math. Appl.), Volume 159, Springer, [Cham], 2016, pp. 619-652 | DOI | MR | Zbl
[36] On orbits of order ideals of minuscule posets, J. Algebraic Combin., Volume 37 (2013) no. 3, pp. 545-569 | DOI | MR | Zbl
[37] On Orbits of Order Ideals of Minuscule Posets II: Homomesy (2015) (https://arxiv.org/abs/1509.08047)
[38] Promotion des morphismes d’ensembles ordonnés, Discrete Math., Volume 2 (1972), pp. 73-94 | DOI | MR | Zbl
[39] Two poset polytopes, Discrete Comput. Geom., Volume 1 (1986) no. 1, pp. 9-23 | DOI | MR | Zbl
[40] Promotion and evacuation, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. 9, 24 pages | MR | Zbl
[41] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages | MR | Zbl
[42] et al. Sage Mathematics Software (Version 9.0) (2020) (http://www.sagemath.org)
[43] Rowmotion and generalized toggle groups, Discrete Math. Theor. Comput. Sci., Volume 20 (2018) no. 1, Paper no. 17, 26 pages | MR | Zbl
[44] Promotion and rowmotion, European J. Combin., Volume 33 (2012) no. 8, pp. 1919-1942 | DOI | MR | Zbl
[45] Rowmotion in slow motion, Proc. Lond. Math. Soc. (3), Volume 119 (2019) no. 5, pp. 1149-1178 | DOI | MR | Zbl
Cited by Sources: