Two elements and of a permutation group acting on a set are said to be intersecting if for some . More generally, a subset of is an intersecting set if every pair of elements of is intersecting. The intersection density of a transitive permutation group is the maximum value of the quotient where runs over all intersecting sets in and is a stabilizer of . In this paper the intersection density of transitive groups of degree twice a prime is determined, and proved to be either or . In addition, it is proved that the intersection density of transitive groups of prime power degree is .
Accepted:
Published online:
Keywords: intersection density, derangement, derangement graph, transitive permutation group
Hujdurović, Ademir 1; Kutnar, Klavdija 1; Marušič, Dragan 2, 3; Miklavič, Štefko 2, 4
@article{ALCO_2022__5_2_289_0, author = {Hujdurovi\'c, Ademir and Kutnar, Klavdija and Maru\v{s}i\v{c}, Dragan and Miklavi\v{c}, \v{S}tefko}, title = {Intersection density of transitive groups of certain degrees}, journal = {Algebraic Combinatorics}, pages = {289--297}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {2}, year = {2022}, doi = {10.5802/alco.209}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.209/} }
TY - JOUR AU - Hujdurović, Ademir AU - Kutnar, Klavdija AU - Marušič, Dragan AU - Miklavič, Štefko TI - Intersection density of transitive groups of certain degrees JO - Algebraic Combinatorics PY - 2022 SP - 289 EP - 297 VL - 5 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.209/ DO - 10.5802/alco.209 LA - en ID - ALCO_2022__5_2_289_0 ER -
%0 Journal Article %A Hujdurović, Ademir %A Kutnar, Klavdija %A Marušič, Dragan %A Miklavič, Štefko %T Intersection density of transitive groups of certain degrees %J Algebraic Combinatorics %D 2022 %P 289-297 %V 5 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.209/ %R 10.5802/alco.209 %G en %F ALCO_2022__5_2_289_0
Hujdurović, Ademir; Kutnar, Klavdija; Marušič, Dragan; Miklavič, Štefko. Intersection density of transitive groups of certain degrees. Algebraic Combinatorics, Volume 5 (2022) no. 2, pp. 289-297. doi : 10.5802/alco.209. https://alco.centre-mersenne.org/articles/10.5802/alco.209/
[1] Relative Brauer groups. II, J. Reine Angew. Math., Volume 328 (1981), pp. 39-57 | DOI | MR | Zbl
[2] Erdos–Ko–Rado theorems: algebraic approaches, Cambridge Studies in Advanced Mathematics, 149, Cambridge University Press, Cambridge, 2016, xvi+335 pages | DOI | MR | Zbl
[3] Transitive permutation groups of degree and being prime numbers, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 165-192 | DOI | MR | Zbl
[4] Transitive permutation groups of degree , and being prime numbers. II, Trans. Amer. Math. Soc., Volume 113 (1964), pp. 454-487 | DOI | MR | Zbl
[5] Transitive permutation groups of degree and being prime numbers. III, Trans. Amer. Math. Soc., Volume 116 (1965), pp. 151-166 | DOI | MR | Zbl
[6] A note on transitive permutation groups of degree , Tensor (N.S.), Volume 26 (1972), pp. 105-106 | MR | Zbl
[7] Recherches sur les substitutions, J. Math. Pures Appl., Volume 17 (1872), pp. 351-367 | Zbl
[8] Erdos–Ko–Rado problems for permutation groups (2021) (https://arxiv.org/abs/2006.10339)
[9] Primitive permutation groups containing an element of large prime order, J. London Math. Soc. (2), Volume 31 (1985) no. 2, pp. 237-249 | DOI | MR | Zbl
[10] On vertex symmetric digraphs, Discrete Math., Volume 36 (1981) no. 1, pp. 69-81 | DOI | MR | Zbl
[11] Semisymmetry of generalized Folkman graphs, European J. Combin., Volume 22 (2001) no. 3, pp. 333-349 | DOI | MR | Zbl
[12] On triangles in derangement graphs, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105390, 26 pages | DOI | MR | Zbl
[13] On complete multipartite derangement graphs, Ars Math. Contemp., Volume 21 (2021) no. 1, Paper no. P1.07, 15 pages | DOI | MR | Zbl
[14] On permutation groups of degree , Math. Z., Volume 126 (1972), pp. 227-229 | DOI | MR | Zbl
[15] Primitive Permutationsgruppen vom Grad , Math. Z., Volume 63 (1956), pp. 478-485 | DOI | MR | Zbl
[16] Finite permutation groups, Academic Press, New York-London, 1964, x+114 pages (Translated from the German by R. Bercov) | MR | Zbl
Cited by Sources: