Octonions and the two strictly projective tight 5-designs
Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 401-411.

In addition to the vertices of the regular hexagon and icosahedron, there are precisely two strictly projective tight 5-designs: one constructed from the short vectors of the Leech lattice and the other corresponding to a generalized hexagon structure in the octonion projective plane. This paper describes a new connection between these two strictly projective tight 5-designs—a common construction using octonions. Certain octonion involutionary matrices act on a three-dimensional octonion vector space to produce the first 5-design and these same matrices act on the octonion projective plane to produce the second 5-design. This result uses the octonion construction of the Leech lattice due to Robert Wilson and provides a new link between the generalized hexagon Gh(2,8) and the Leech lattice.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.215
Classification: 05B99, 17A75, 17C40
Keywords: Projective t-designs, octonions, Leech lattice, generalized hexagon

Nasmith, Benjamin 1

1 Department of Mathematics and Computer Science Royal Military College of Canada Kingston, ON
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_3_401_0,
     author = {Nasmith, Benjamin},
     title = {Octonions and the two strictly projective tight 5-designs},
     journal = {Algebraic Combinatorics},
     pages = {401--411},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {3},
     year = {2022},
     doi = {10.5802/alco.215},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.215/}
}
TY  - JOUR
AU  - Nasmith, Benjamin
TI  - Octonions and the two strictly projective tight 5-designs
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 401
EP  - 411
VL  - 5
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.215/
DO  - 10.5802/alco.215
LA  - en
ID  - ALCO_2022__5_3_401_0
ER  - 
%0 Journal Article
%A Nasmith, Benjamin
%T Octonions and the two strictly projective tight 5-designs
%J Algebraic Combinatorics
%D 2022
%P 401-411
%V 5
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.215/
%R 10.5802/alco.215
%G en
%F ALCO_2022__5_3_401_0
Nasmith, Benjamin. Octonions and the two strictly projective tight 5-designs. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 401-411. doi : 10.5802/alco.215. https://alco.centre-mersenne.org/articles/10.5802/alco.215/

[1] Handbook of mathematical functions (Abramowitz, Milton; Stegun, Irene A., eds.), Dover, New York, 1972

[2] Baez, John C. The octonions, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 2, pp. 145-205 | DOI | MR | Zbl

[3] Bannai, Eiichi; Bannai, Etsuko A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin., Volume 30 (2009) no. 6, pp. 1392-1425 | DOI | MR | Zbl

[4] Bannai, Eiichi; Hoggar, Stuart G. On tight t-designs in compact symmetric spaces of rank one, Proc. Japan Acad. Ser. A Math. Sci., Volume 61 (1985) no. 3, pp. 78-82 | MR | Zbl

[5] Bannai, Eiichi; Munemasa, Akihiro; Venkov, Boris B. The nonexistence of certain tight spherical designs, St. Petersburg Mathematical Journal, Volume 16 (2005) no. 4, pp. 609-625 | DOI | MR | Zbl

[6] Cohen, Arjeh M. Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 3, pp. 379-436 | DOI | Numdam | MR | Zbl

[7] Cohen, Arjeh M. Finite quaternionic reflection groups, J. Algebra, Volume 64 (1980) no. 2, pp. 293-324 | DOI | MR | Zbl

[8] Cohen, Arjeh M. Exceptional presentations of three generalized hexagons of order 2, J. Combin. Theory Ser. A, Volume 35 (1983) no. 1, pp. 79-88 | DOI | MR | Zbl

[9] Cohn, Henry; Kumar, Abhinav; Minton, Gregory Optimal simplices and codes in projective spaces, Geom. Topol., Volume 20 (2016) no. 3, pp. 1289-1357 | DOI | MR | Zbl

[10] Handbook of combinatorial designs (Colbourn, Charles J.; Dinitz, Jeffrey H., eds.), Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007, xxii+984 pages | MR

[11] Conway, John H.; Sloane, Neil J. A. Sphere packings, lattices and groups, 290, Springer Science & Business Media, 2013

[12] Conway, John H.; Smith, Derek A. On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003, xii+159 pages | DOI | MR | Zbl

[13] Delsarte, Philippe; Goethals, Jean-Marie; Seidel, Johan J. Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl

[14] Faraut, Jacques; Korányi, Adam Analysis on symmetric cones, Oxford Mathematical Monographs, Clarendon Press, New York, 1994, xii+382 pages (Oxford Science Publications) | MR | Zbl

[15] GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020 (https://www.gap-system.org)

[16] Hoggar, Stuart G. t-designs in projective spaces, European J. Combin., Volume 3 (1982) no. 3, pp. 233-254 | DOI | MR | Zbl

[17] Hoggar, Stuart G. Tight t-designs and octonions, Mitt. Math. Sem. Giessen (1984) no. 165, pp. 1-16 | MR | Zbl

[18] Hoggar, Stuart G. Tight 4- and 5-designs in projective spaces, Graphs Combin., Volume 5 (1989) no. 1, pp. 87-94 | DOI | MR | Zbl

[19] Hoggar, Stuart G. t-designs with general angle set, European J. Combin., Volume 13 (1992) no. 4, pp. 257-271 | DOI | MR | Zbl

[20] Lyubich, Yu. I. On tight projective designs, Des. Codes Cryptogr., Volume 51 (2009) no. 1, pp. 21-31 | DOI | MR | Zbl

[21] Neumaier, Arnold Lecture notes: combinatorial configurations in terms of distances, 1981 no. Memorandum 81-09, pp. 1-97

[22] Schafer, Richard D. An introduction to nonassociative algebras, Dover, New York, 2017

[23] Shephard, Geoffrey C.; Todd, John A. Finite unitary reflection groups, Canad. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[24] Springer, Tonny A.; Veldkamp, Ferdinand D. Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000, viii+208 pages | DOI | MR | Zbl

[25] Wang, Hsien-Chung Two-point homogeneous spaces, Ann. of Math. (2), Volume 55 (1952), pp. 177-191 | DOI | MR | Zbl

[26] Wilson, Robert A. The finite simple groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009, xvi+298 pages | DOI | MR | Zbl

[27] Wilson, Robert A. Octonions and the Leech lattice, J. Algebra, Volume 322 (2009) no. 6, pp. 2186-2190 | DOI | MR | Zbl

[28] Wilson, Robert A. Conway’s group and octonions, J. Group Theory, Volume 14 (2011) no. 1, pp. 1-8 | DOI | MR | Zbl

Cited by Sources: