In addition to the vertices of the regular hexagon and icosahedron, there are precisely two strictly projective tight 5-designs: one constructed from the short vectors of the Leech lattice and the other corresponding to a generalized hexagon structure in the octonion projective plane. This paper describes a new connection between these two strictly projective tight 5-designs—a common construction using octonions. Certain octonion involutionary matrices act on a three-dimensional octonion vector space to produce the first 5-design and these same matrices act on the octonion projective plane to produce the second 5-design. This result uses the octonion construction of the Leech lattice due to Robert Wilson and provides a new link between the generalized hexagon Gh(2,8) and the Leech lattice.
Revised:
Accepted:
Published online:
Keywords: Projective t-designs, octonions, Leech lattice, generalized hexagon
Nasmith, Benjamin 1
@article{ALCO_2022__5_3_401_0, author = {Nasmith, Benjamin}, title = {Octonions and the two strictly projective tight 5-designs}, journal = {Algebraic Combinatorics}, pages = {401--411}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {3}, year = {2022}, doi = {10.5802/alco.215}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.215/} }
TY - JOUR AU - Nasmith, Benjamin TI - Octonions and the two strictly projective tight 5-designs JO - Algebraic Combinatorics PY - 2022 SP - 401 EP - 411 VL - 5 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.215/ DO - 10.5802/alco.215 LA - en ID - ALCO_2022__5_3_401_0 ER -
%0 Journal Article %A Nasmith, Benjamin %T Octonions and the two strictly projective tight 5-designs %J Algebraic Combinatorics %D 2022 %P 401-411 %V 5 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.215/ %R 10.5802/alco.215 %G en %F ALCO_2022__5_3_401_0
Nasmith, Benjamin. Octonions and the two strictly projective tight 5-designs. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 401-411. doi : 10.5802/alco.215. https://alco.centre-mersenne.org/articles/10.5802/alco.215/
[1] Handbook of mathematical functions (Abramowitz, Milton; Stegun, Irene A., eds.), Dover, New York, 1972
[2] The octonions, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 2, pp. 145-205 | DOI | MR | Zbl
[3] A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin., Volume 30 (2009) no. 6, pp. 1392-1425 | DOI | MR | Zbl
[4] On tight -designs in compact symmetric spaces of rank one, Proc. Japan Acad. Ser. A Math. Sci., Volume 61 (1985) no. 3, pp. 78-82 | MR | Zbl
[5] The nonexistence of certain tight spherical designs, St. Petersburg Mathematical Journal, Volume 16 (2005) no. 4, pp. 609-625 | DOI | MR | Zbl
[6] Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 3, pp. 379-436 | DOI | Numdam | MR | Zbl
[7] Finite quaternionic reflection groups, J. Algebra, Volume 64 (1980) no. 2, pp. 293-324 | DOI | MR | Zbl
[8] Exceptional presentations of three generalized hexagons of order , J. Combin. Theory Ser. A, Volume 35 (1983) no. 1, pp. 79-88 | DOI | MR | Zbl
[9] Optimal simplices and codes in projective spaces, Geom. Topol., Volume 20 (2016) no. 3, pp. 1289-1357 | DOI | MR | Zbl
[10] Handbook of combinatorial designs (Colbourn, Charles J.; Dinitz, Jeffrey H., eds.), Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007, xxii+984 pages | MR
[11] Sphere packings, lattices and groups, 290, Springer Science & Business Media, 2013
[12] On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003, xii+159 pages | DOI | MR | Zbl
[13] Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl
[14] Analysis on symmetric cones, Oxford Mathematical Monographs, Clarendon Press, New York, 1994, xii+382 pages (Oxford Science Publications) | MR | Zbl
[15] GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020 (https://www.gap-system.org)
[16] -designs in projective spaces, European J. Combin., Volume 3 (1982) no. 3, pp. 233-254 | DOI | MR | Zbl
[17] Tight -designs and octonions, Mitt. Math. Sem. Giessen (1984) no. 165, pp. 1-16 | MR | Zbl
[18] Tight - and -designs in projective spaces, Graphs Combin., Volume 5 (1989) no. 1, pp. 87-94 | DOI | MR | Zbl
[19] -designs with general angle set, European J. Combin., Volume 13 (1992) no. 4, pp. 257-271 | DOI | MR | Zbl
[20] On tight projective designs, Des. Codes Cryptogr., Volume 51 (2009) no. 1, pp. 21-31 | DOI | MR | Zbl
[21] Lecture notes: combinatorial configurations in terms of distances, 1981 no. Memorandum 81-09, pp. 1-97
[22] An introduction to nonassociative algebras, Dover, New York, 2017
[23] Finite unitary reflection groups, Canad. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[24] Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000, viii+208 pages | DOI | MR | Zbl
[25] Two-point homogeneous spaces, Ann. of Math. (2), Volume 55 (1952), pp. 177-191 | DOI | MR | Zbl
[26] The finite simple groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009, xvi+298 pages | DOI | MR | Zbl
[27] Octonions and the Leech lattice, J. Algebra, Volume 322 (2009) no. 6, pp. 2186-2190 | DOI | MR | Zbl
[28] Conway’s group and octonions, J. Group Theory, Volume 14 (2011) no. 1, pp. 1-8 | DOI | MR | Zbl
Cited by Sources: