The Newell–Littlewood numbers are tensor product multiplicities of Weyl modules for classical Lie groups, in the stable limit. For which triples of partitions does hold? The Littlewood–Richardson coefficient case is solved by the Horn inequalities (in work of A. Klyachko and A. Knutson-T. Tao). We extend these celebrated linear inequalities to a much larger family, suggesting a general solution.
Revised:
Accepted:
Published online:
Keywords: Newell–Littlewood numbers, Weyl modules, Horn inequalities
Gao, Shiliang 1; Orelowitz, Gidon 1; Yong, Alexander 1
@article{ALCO_2022__5_6_1287_0, author = {Gao, Shiliang and Orelowitz, Gidon and Yong, Alexander}, title = {Newell{\textendash}Littlewood numbers {II:} extended {Horn} inequalities}, journal = {Algebraic Combinatorics}, pages = {1287--1297}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {6}, year = {2022}, doi = {10.5802/alco.217}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.217/} }
TY - JOUR AU - Gao, Shiliang AU - Orelowitz, Gidon AU - Yong, Alexander TI - Newell–Littlewood numbers II: extended Horn inequalities JO - Algebraic Combinatorics PY - 2022 SP - 1287 EP - 1297 VL - 5 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.217/ DO - 10.5802/alco.217 LA - en ID - ALCO_2022__5_6_1287_0 ER -
%0 Journal Article %A Gao, Shiliang %A Orelowitz, Gidon %A Yong, Alexander %T Newell–Littlewood numbers II: extended Horn inequalities %J Algebraic Combinatorics %D 2022 %P 1287-1297 %V 5 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.217/ %R 10.5802/alco.217 %G en %F ALCO_2022__5_6_1287_0
Gao, Shiliang; Orelowitz, Gidon; Yong, Alexander. Newell–Littlewood numbers II: extended Horn inequalities. Algebraic Combinatorics, Volume 5 (2022) no. 6, pp. 1287-1297. doi : 10.5802/alco.217. https://alco.centre-mersenne.org/articles/10.5802/alco.217/
[1] Local systems on for a finite set, Compositio Math., Volume 129 (2001) no. 1, pp. 67-86 | DOI | MR | Zbl
[2] Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math., Volume 166 (2006) no. 1, pp. 185-228 | DOI | MR | Zbl
[3] Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities, Amer. Math. Monthly, Volume 108 (2001) no. 4, pp. 289-318 | DOI | MR | Zbl
[4] Rectangular symmetries for coefficients of symmetric functions, Electron. J. Combin., Volume 22 (2015) no. 3, Paper no. 3.15, 18 pages | DOI | MR | Zbl
[5] Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.), Volume 37 (2000) no. 3, pp. 209-249 | DOI | MR | Zbl
[6] Newell–Littlewood numbers III: eigencones and GIT-semigroups (2021) (https://arxiv.org/abs/2107.03152)
[7] Newell–Littlewood numbers, Trans. Amer. Math. Soc., Volume 374 (2021) no. 9, pp. 6331-6366 | DOI | MR | Zbl
[8] On classical groups detected by the triple tensor product and the Littlewood–Richardson semigroup, Res. Number Theory, Volume 2 (2016), Paper no. 19, 12 pages | DOI | MR | Zbl
[9] Eigenvalues of sums of Hermitian matrices, Pacific J. Math., Volume 12 (1962), pp. 225-241 | DOI | MR | Zbl
[10] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), Volume 4 (1998) no. 3, pp. 419-445 | DOI | MR | Zbl
[11] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl
[12] The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone, J. Amer. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl
[13] A survey of the additive eigenvalue problem. With an appendix by M. Kapovich, Transform. Groups, Volume 19 (2014) no. 4, pp. 1051-1148 | DOI | MR | Zbl
[14] Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl
[15] Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A, Volume 54 (1951), pp. 153-163 | MR | Zbl
[16] Horn inequalities for nonzero Kronecker coefficients, Adv. Math., Volume 356 (2019), Paper no. 106809, 21 pages | DOI | MR | Zbl
[17] Littlewood–Richardson semigroups, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) (Math. Sci. Res. Inst. Publ.), Volume 38, Cambridge Univ. Press, Cambridge, 1999, pp. 337-345 | MR | Zbl
Cited by Sources: