Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture
Algebraic Combinatorics, Volume 5 (2022) no. 6, pp. 1299-1336.

Using the description of hypermaps with matchings, Goulden and Jackson have given an expression of the generating series of rooted bipartite maps in terms of the zonal polynomials. We generalize this approach to the case of constellations on non-oriented surfaces that have recently been introduced by Chapuy and Dołęga. A key step in the proof is an encoding of constellations with tuples of matchings.

We consider a one parameter deformation of the generating series of constellations using Jack polynomials and we introduce the coefficients c μ 0 ,...,μ k λ (b) obtained by the expansion of these functions in the power-sum basis. These coefficients are indexed by k+2 integer partitions and the deformation parameter b, and can be considered as a generalization for k>1 of the connection coefficients introduced by Goulden and Jackson. We prove that when we take some marginal sums, these coefficients enumerate b-weighted k-tuples of matchings. This can be seen as an “disconnected” version of a recent result of Chapuy and Dołęga for constellations. For k=1, this gives a partial answer to Goulden and Jackson Matching-Jack conjecture.

Lassalle has formulated a positivity conjecture for the coefficients θ μ (α) (λ), defined as the coefficient of the Jack polynomial J λ (α) in the power-sum basis. We use the second main result of this paper to give a proof of this conjecture in the case of partitions λ with rectangular shape.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.207
Classification: 05E05,  05C30,  05C10,  05A15
Keywords: Maps, Jack polynomials, Matchings, Matching-Jack conjecture, Constellations.
Ben Dali, Houcine 1

1 Université de Paris CNRS IRIF F-75006 Paris France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_6_1299_0,
     author = {Ben Dali, Houcine},
     title = {Generating series of non-oriented constellations and marginal sums in the {Matching-Jack} conjecture},
     journal = {Algebraic Combinatorics},
     pages = {1299--1336},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {6},
     year = {2022},
     doi = {10.5802/alco.207},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.207/}
}
TY  - JOUR
AU  - Ben Dali, Houcine
TI  - Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 1299
EP  - 1336
VL  - 5
IS  - 6
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.207/
UR  - https://doi.org/10.5802/alco.207
DO  - 10.5802/alco.207
LA  - en
ID  - ALCO_2022__5_6_1299_0
ER  - 
%0 Journal Article
%A Ben Dali, Houcine
%T Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture
%J Algebraic Combinatorics
%D 2022
%P 1299-1336
%V 5
%N 6
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.207
%R 10.5802/alco.207
%G en
%F ALCO_2022__5_6_1299_0
Ben Dali, Houcine. Generating series of non-oriented constellations and marginal sums in the Matching-Jack conjecture. Algebraic Combinatorics, Volume 5 (2022) no. 6, pp. 1299-1336. doi : 10.5802/alco.207. https://alco.centre-mersenne.org/articles/10.5802/alco.207/

[1] Albenque, Marie; Lepoutre, Mathias Combinatorial proof for the rationality of the bivariate generating series of maps in positive genus (2020) (https://arxiv.org/abs/2007.07692)

[2] Bender, Edward A.; Canfield, E. Rodney The asymptotic number of rooted maps on a surface, J. Combin. Theory Ser. A, Volume 43 (1986) no. 2, pp. 244-257 | DOI | MR | Zbl

[3] Bonzom, Valentin; Chapuy, Guillaume; Dołęga, Maciej b-monotone Hurwitz numbers: Virasoro constraints, BKP hierarchy, and O(N)-BGW integral (2021) (https://arxiv.org/abs/2109.01499)

[4] Bousquet-Mélou, Mireille; Schaeffer, Gilles Enumeration of planar constellations, Adv. in Appl. Math., Volume 24 (2000) no. 4, pp. 337-368 | DOI | MR | Zbl

[5] Burchardt, Adam The top-degree part in the matchings-Jack conjecture, Electron. J. Combin., Volume 28 (2021) no. 2, Paper no. 2.15, 41 pages | DOI | MR | Zbl

[6] Chapuy, Guillaume A new combinatorial identity for unicellular maps, via a direct bijective approach, Adv. in Appl. Math., Volume 47 (2011) no. 4, pp. 874-893 | DOI | MR | Zbl

[7] Chapuy, Guillaume Rencontres autour de la combinatoire des cartes, Habilitation à diriger des recherches en informatique, Université Paris Diderot (2018)

[8] Chapuy, Guillaume; Dołęga, Maciej Non orientable branched coverings, b-Hurwitz numbers, and positivity for multiparametric Jack expansions (2020) (https://arxiv.org/abs/2004.07824)

[9] Czyżewska-Jankowska, Agnieszka; Śniady, Piotr Bijection between oriented maps and weighted non-oriented maps, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.7, 34 pages | DOI | MR | Zbl

[10] Dołęga, Maciej Top degree part in b-conjecture for unicellular bipartite maps, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.24, 39 pages | MR | Zbl

[11] Dołęga, Maciej; Féray, Valentin Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 165 (2016) no. 7, pp. 1193-1282 | DOI | MR | Zbl

[12] Dołęga, Maciej; Féray, Valentin Cumulants of Jack symmetric functions and the b-conjecture, Trans. Amer. Math. Soc., Volume 369 (2017) no. 12, pp. 9015-9039 | DOI | MR | Zbl

[13] Dołęga, Maciej; Féray, Valentin; Śniady, Piotr Jack polynomials and orientability generating series of maps, Sém. Lothar. Combin., Volume 70 (2013), Paper no. B70j, 50 pages | MR | Zbl

[14] Eynard, Bertrand Counting surfaces, Progress in Mathematical Physics, 70, Birkhäuser/Springer, Cham, 2016, xvii+414 pages (CRM Aisenstadt chair lectures) | DOI | MR | Zbl

[15] Fang, Wenjie Enumerative and bijective aspects of combinatorial maps : generalization, unification and application, Ph. D. Thesis, Université Sorbonne Paris (2016)

[16] Flajolet, Philippe; Sedgewick, Robert Analytic combinatorics, Cambridge University Press, Cambridge, 2009, xiv+810 pages | DOI | MR | Zbl

[17] Goulden, Ian P.; Jackson, David M. Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions, Trans. Amer. Math. Soc., Volume 348 (1996) no. 3, pp. 873-892 | DOI | MR | Zbl

[18] Goulden, Ian P.; Jackson, David M. Maps in locally orientable surfaces, the double coset algebra, and zonal polynomials, Canad. J. Math., Volume 48 (1996) no. 3, pp. 569-584 | DOI | MR | Zbl

[19] Goulden, Ian P.; Jackson, David M. The KP hierarchy, branched covers, and triangulations, Adv. Math., Volume 219 (2008) no. 3, pp. 932-951 | DOI | MR | Zbl

[20] Hanlon, Phil Jack symmetric functions and some combinatorial properties of Young symmetrizers, J. Combin. Theory Ser. A, Volume 47 (1988) no. 1, pp. 37-70 | DOI | MR | Zbl

[21] Hanlon, Philip J.; Stanley, Richard P.; Stembridge, John R. Some combinatorial aspects of the spectra of normally distributed random matrices, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) (Contemp. Math.), Volume 138, Amer. Math. Soc., Providence, RI, 1992, pp. 151-174 | DOI | MR | Zbl

[22] Jack, Henry A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh Sect. A, Volume 69 (1970/71), pp. 1-18 | MR | Zbl

[23] Jackson, David M.; Visentin, Terry I. A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus, Trans. Amer. Math. Soc., Volume 322 (1990) no. 1, pp. 343-363 | DOI | MR | Zbl

[24] Kanunnikov, Andrei L.; Promyslov, Valentin V.; Vassilieva, Ekaterina A. A labelled variant of the matchings-Jack and hypermap-Jack conjectures, Sém. Lothar. Combin., Volume 80B (2018), Paper no. 45, 12 pages | MR | Zbl

[25] Kanunnikov, Andrei L.; Vassilieva, Ekaterina A. On the matchings-Jack conjecture for Jack connection coefficients indexed by two single part partitions, Electron. J. Combin., Volume 23 (2016) no. 1, Paper no. 1.53, 30 pages | MR | Zbl

[26] Kazarian, Maxim; Zograf, Peter Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., Volume 105 (2015) no. 8, pp. 1057-1084 | DOI | MR | Zbl

[27] Knop, Friedrich; Sahi, Siddhartha A recursion and a combinatorial formula for Jack polynomials, Invent. Math., Volume 128 (1997) no. 1, pp. 9-22 | DOI | MR | Zbl

[28] La Croix, Michael A. The combinatorics of the Jack parameter and the genus series for topological maps, Ph. D. Thesis, University of Waterloo (2009) | MR

[29] Lando, Sergei K.; Zvonkin, Alexander K. Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004, xvi+455 pages | DOI | MR | Zbl

[30] Lassalle, Michel A positivity conjecture for Jack polynomials, Math. Res. Lett., Volume 15 (2008) no. 4, pp. 661-681 | DOI | MR | Zbl

[31] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | MR | Zbl

[32] Stanley, Richard P. Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989) no. 1, pp. 76-115 | DOI | MR | Zbl

Cited by Sources: