We review a class of modules for the wreath product of two symmetric groups which are analogous to the Specht modules of the symmetric group, and prove a pair of branching rules for this family of modules. These branching rules describe the behaviour of these wreath product Specht modules under restriction to the wreath products and . In particular, we see that these restrictions of wreath product Specht modules have Specht module filtrations, and we obtain combinatorial interpretations of the multiplicities in these filtrations.
Revised:
Accepted:
Published online:
Keywords: branching rules, Specht modules, symmetric groups
Green, Reuben 1
@article{ALCO_2022__5_4_609_0, author = {Green, Reuben}, title = {Specht module branching rules for wreath products of symmetric groups}, journal = {Algebraic Combinatorics}, pages = {609--628}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {4}, year = {2022}, doi = {10.5802/alco.223}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.223/} }
TY - JOUR AU - Green, Reuben TI - Specht module branching rules for wreath products of symmetric groups JO - Algebraic Combinatorics PY - 2022 SP - 609 EP - 628 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.223/ DO - 10.5802/alco.223 LA - en ID - ALCO_2022__5_4_609_0 ER -
%0 Journal Article %A Green, Reuben %T Specht module branching rules for wreath products of symmetric groups %J Algebraic Combinatorics %D 2022 %P 609-628 %V 5 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.223/ %R 10.5802/alco.223 %G en %F ALCO_2022__5_4_609_0
Green, Reuben. Specht module branching rules for wreath products of symmetric groups. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 609-628. doi : 10.5802/alco.223. https://alco.centre-mersenne.org/articles/10.5802/alco.223/
[1] Representations and Cohomology, Cambridge Studies in Advanced Mathematics, 1, Cambridge University Press, 1991
[2] Representations of wreath products of algebras, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 3, pp. 395 - 411 | DOI | MR | Zbl
[3] Cellularity of wreath product algebras and A-Brauer algebras, J. Algebra, Volume 389 (2013), pp. 151 -190 | DOI | MR | Zbl
[4] Cellular algebras., Invent. Math., Volume 123 (1996) no. 1, pp. 1-34 | DOI | MR | Zbl
[5] Some properties of Specht modules for the wreath product of symmetric groups, Ph. D. Thesis, University of Kent (2019)
[6] Cellular structure of wreath product algebras, J. Pure Appl. Algebra, Volume 224 (2020) no. 2, pp. 819 -835 | DOI | MR | Zbl
[7] The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, Berlin, 1978
[8] The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981
[9] Specht series for skew representations of symmetric groups, J. Algebra, Volume 56 (1979) no. 2, pp. 343-364 | DOI | MR | Zbl
[10] Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, 1999 | DOI
[11] A modular branching rule for wreath products, Combinatorial representation theory and related topics (RIMS Kôkyûroku Bessatsu, B8), Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 21-35 | MR | Zbl
[12] A model for the double cosets of Young subgroups http://www.ma.rhul.ac.uk/~uvah099/Maths/doubleRevised2.pdf
Cited by Sources: