Automorphism groups of Steiner triple systems
Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 593-608.

If G is a finite group then there is an integer M G such that, for uM G and u1 or 3 (mod 6), there is a Steiner triple system U on u points for which Aut UG. If V is a Steiner triple system then there is an integer N V such that, for uN V and u1 or 3 (mod 6), there is a Steiner triple system U on u points having V as an Aut U-invariant subsystem such that Aut U Aut V and Aut U induces Aut V on V.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.240
Classification: 05B07,  05B25,  51E10
Keywords: Steiner triple system, Automorphism group
Doyen, Jean 1; Kantor, William M. 2

1 Université Libre de Bruxelles Bruxelles 1050 Belgium
2 U. of Oregon Eugene OR 97403 and Northeastern U. Boston MA 02115
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_4_593_0,
     author = {Doyen, Jean and Kantor, William M.},
     title = {Automorphism groups of {Steiner} triple systems},
     journal = {Algebraic Combinatorics},
     pages = {593--608},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {4},
     year = {2022},
     doi = {10.5802/alco.240},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.240/}
}
TY  - JOUR
TI  - Automorphism groups of Steiner triple systems
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 593
EP  - 608
VL  - 5
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.240/
UR  - https://doi.org/10.5802/alco.240
DO  - 10.5802/alco.240
LA  - en
ID  - ALCO_2022__5_4_593_0
ER  - 
%0 Journal Article
%T Automorphism groups of Steiner triple systems
%J Algebraic Combinatorics
%D 2022
%P 593-608
%V 5
%N 4
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.240
%R 10.5802/alco.240
%G en
%F ALCO_2022__5_4_593_0
Doyen, Jean; Kantor, William M. Automorphism groups of Steiner triple systems. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 593-608. doi : 10.5802/alco.240. https://alco.centre-mersenne.org/articles/10.5802/alco.240/

[1] Cameron, Peter J. Embedding partial Steiner triple systems so that their automorphisms extend, J. Combin. Des., Volume 13 (2005) no. 6, pp. 466-470 | DOI | MR | Zbl

[2] Doyen, Jean; Wilson, Richard M. Embeddings of Steiner triple systems, Discrete Math., Volume 5 (1973), pp. 229-239 | DOI | MR | Zbl

[3] Kantor, William M. Automorphism groups of designs with λ=1, Discrete Math., Volume 342 (2019) no. 10, pp. 2886-2892 | DOI | MR | Zbl

[4] Lindner, Charles C.; Rosa, Alexander On the existence of automorphism free Steiner triple systems, J. Algebra, Volume 34 (1975), pp. 430-443 | DOI | MR | Zbl

[5] Mendelsohn, Eric On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory Ser. A, Volume 25 (1978) no. 2, pp. 97-104 | DOI | MR | Zbl

[6] Moore, E. Hastings Concerning triple systems, Math. Ann., Volume 43 (1893) no. 2-3, pp. 271-285 | DOI | MR

[7] van Lint, Jacobus H.; Wilson, Richard M. A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages | DOI | MR

Cited by Sources: