We compute the expansion of the Catalan family of Lie idempotents introduced in [Menous et al., Adv. Applied Math. 51 (2013), 177–22] on the PBW basis of the Lie module. It is found that the coefficient of a tree depends only on its number of left and right internal edges. In particular, the Catalan idempotents belong to a preLie algebra based on naked binary trees, of which we identify several Lie and preLie subalgebras.
Revised:
Accepted:
Published online:
Keywords: Noncommutative symmetric functions, Lie idempotents, Free Lie algebra, Dendriform algebras, PreLie algebras.
Foissy, Loïc 1; Menous, Frédéric 2; Novelli, Jean-Christophe 3; Thibon, Jean-Yves 3
@article{ALCO_2022__5_4_629_0, author = {Foissy, Lo{\"\i}c and Menous, Fr\'ed\'eric and Novelli, Jean-Christophe and Thibon, Jean-Yves}, title = {Quadri-algebras, {preLie} algebras, {and~the~Catalan} family of {Lie} idempotents}, journal = {Algebraic Combinatorics}, pages = {629--666}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {4}, year = {2022}, doi = {10.5802/alco.224}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.224/} }
TY - JOUR AU - Foissy, Loïc AU - Menous, Frédéric AU - Novelli, Jean-Christophe AU - Thibon, Jean-Yves TI - Quadri-algebras, preLie algebras, and the Catalan family of Lie idempotents JO - Algebraic Combinatorics PY - 2022 SP - 629 EP - 666 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.224/ DO - 10.5802/alco.224 LA - en ID - ALCO_2022__5_4_629_0 ER -
%0 Journal Article %A Foissy, Loïc %A Menous, Frédéric %A Novelli, Jean-Christophe %A Thibon, Jean-Yves %T Quadri-algebras, preLie algebras, and the Catalan family of Lie idempotents %J Algebraic Combinatorics %D 2022 %P 629-666 %V 5 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.224/ %R 10.5802/alco.224 %G en %F ALCO_2022__5_4_629_0
Foissy, Loïc; Menous, Frédéric; Novelli, Jean-Christophe; Thibon, Jean-Yves. Quadri-algebras, preLie algebras, and the Catalan family of Lie idempotents. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 629-666. doi : 10.5802/alco.224. https://alco.centre-mersenne.org/articles/10.5802/alco.224/
[1] Quadri-algebras, J. Pure Appl. Algebra, Volume 191 (2004) no. 3, pp. 205-221 | DOI | MR | Zbl
[2] Eulerian idempotent, pre-Lie logarithm and combinatorics of trees (2017) (preprint, https://arxiv.org/abs/1702.08907)
[3] Explicit solution of the continuous Baker–Campbell–Hausdorff problem and a new expression for the phase operator, Annals of Physics, Volume 51 (1969) no. 1, pp. 187-200 | DOI | Zbl
[4] Démonstration algébrique de la formule de Hausdorff, Bull. Soc. Math. France, Volume 84 (1956), pp. 241-249 | DOI | Numdam | MR | Zbl
[5] A rooted-trees -series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl
[6] Flows on rooted trees and the Menous–Novelli–Thibon idempotents, Math. Scand., Volume 115 (2014) no. 1, pp. 20-61 | DOI | MR | Zbl
[7] Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices (2001) no. 8, pp. 395-408 | DOI | MR | Zbl
[8] Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 671-717 | DOI | MR | Zbl
[9] Calculation of the coefficients in the Campbell–Hausdorff formula, Doklady Akad. Nauk SSSR (N.S.), Volume 57 (1947), pp. 323-326 | MR
[10] Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra, Volume 209 (2007) no. 2, pp. 439-459 | DOI | MR | Zbl
[11] Free brace algebras are free pre-Lie algebras, Comm. Algebra, Volume 38 (2010) no. 9, pp. 3358-3369 | DOI | MR | Zbl
[12] Noncommutative symmetric functions, Adv. Math., Volume 112 (1995) no. 2, pp. 218-348 | DOI | MR | Zbl
[13] The algebra of binary search trees, Theoret. Comput. Sci., Volume 339 (2005) no. 1, pp. 129-165 | DOI | MR | Zbl
[14] Lie elements in a tensor algebra, Sibirsk. Mat. Ž., Volume 15 (1974), p. 1296-1304, 1430 | DOI | MR | Zbl
[15] Noncommutative symmetric functions. II. Transformations of alphabets, Internat. J. Algebra Comput., Volume 7 (1997) no. 2, pp. 181-264 | DOI | MR | Zbl
[16] Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math., Volume 96 (1989) no. 1, pp. 205-230 | DOI | MR | Zbl
[17] Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray (Sémin. Congr.), Volume 9, Soc. Math. France, Paris, 2004, pp. 155-172 | MR | Zbl
[18] Dialgebras and related operads, Lecture Notes in Mathematics, 1763, Springer-Verlag, Berlin, 2001, iv+133 pages | DOI | MR | Zbl
[19] Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998) no. 2, pp. 293-309 | DOI | MR | Zbl
[20] Symmetric functions and Hall polynomials. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley. Reprint of the 2008 paperback edition, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl
[21] Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | DOI | MR | Zbl
[22] The well-behaved Catalan and Brownian averages and their applications to real resummation, Proceedings of the Symposium on Planar Vector Fields (Lleida, 1996), Volume 41 (1997), pp. 209-222 | DOI | MR | Zbl
[23] Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras, Adv. in Appl. Math., Volume 51 (2013) no. 2, pp. 177-227 | DOI | MR | Zbl
[24] Combinatorial approach to Baker–Campbell–Hausdorff exponents, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 12 (1970), pp. 215-254 | Numdam | MR | Zbl
[25] Construction de trigèbres dendriformes, C. R. Math. Acad. Sci. Paris, Volume 342 (2006) no. 6, pp. 365-369 | DOI | MR | Zbl
[26] Polynomial realizations of some trialgebras, 18th Formal Power Series and Algebraic Combinatorics (FPSAC’06) (2006) no. 1, pp. 243-254
[27] Sur l’algèbre enveloppante d’une algèbre pré-Lie, C. R. Math. Acad. Sci. Paris, Volume 340 (2005) no. 5, pp. 331-336 | DOI | MR | Zbl
[28] Lie representations and an algebra containing Solomon’s, J. Algebraic Combin., Volume 16 (2002) no. 3, p. 301-314 (2003) | DOI | MR | Zbl
[29] Theorem of Poincaré–Birkhoff–Witt, logarithm and symmetric group representations of degrees equal to Stirling numbers, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) (Lecture Notes in Math.), Volume 1234, Springer, Berlin, 1986, pp. 267-284 | DOI | MR | Zbl
[30] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993, xviii+269 pages (Oxford Science Publications) | MR | Zbl
[31] The operad Lie is free, J. Pure Appl. Algebra, Volume 213 (2009) no. 2, pp. 224-230 | DOI | MR | Zbl
[32] On the Poincaré-Birkhoff-Witt theorem, J. Combinatorial Theory, Volume 4 (1968), pp. 363-375 | DOI | MR | Zbl
[33] A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976) no. 2, pp. 255-264 | DOI | MR | Zbl
[34] Treue Darstellung Liescher Ringe, J. Reine Angew. Math., Volume 177 (1937), pp. 152-160 | DOI | MR | Zbl
Cited by Sources: