A generalisation of bar-core partitions
Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 667-698.

When p and q are coprime odd integers no less than 3, Olsson proved that the q-bar-core of a p-bar-core is again a p-bar-core. We establish a generalisation of this theorem: that the p-bar-weight of the q-bar-core of a bar partition λ is at most the p-bar-weight of λ. We go on to study the set of bar partitions for which equality holds and show that it is a union of orbits for an action of a Coxeter group of type C ˜ (p-1)/2 ×C ˜ (q-1)/2 . We also provide an algorithm for constructing a bar partition in this set with a given p-bar-core and q-bar-core.

Published online:
DOI: 10.5802/alco.231
Classification: 05E10,  05A17,  20C30
Keywords: representation theory, symmetric group, partitions, projective, bar-core
Yates, Dean 1

1 Queen Mary, University of London Mile End Road Bethnal Green London E1 4NS
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Yates, Dean},
     title = {A generalisation of bar-core partitions},
     journal = {Algebraic Combinatorics},
     pages = {667--698},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {4},
     year = {2022},
     doi = {10.5802/alco.231},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.231/}
TI  - A generalisation of bar-core partitions
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 667
EP  - 698
VL  - 5
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.231/
UR  - https://doi.org/10.5802/alco.231
DO  - 10.5802/alco.231
LA  - en
ID  - ALCO_2022__5_4_667_0
ER  - 
%0 Journal Article
%T A generalisation of bar-core partitions
%J Algebraic Combinatorics
%D 2022
%P 667-698
%V 5
%N 4
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.231
%R 10.5802/alco.231
%G en
%F ALCO_2022__5_4_667_0
Yates, Dean. A generalisation of bar-core partitions. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 667-698. doi : 10.5802/alco.231. https://alco.centre-mersenne.org/articles/10.5802/alco.231/

[1] Bessenrodt, C.; Olsson, J. Spin block inclusions, J. Algebra, Volume 306 (2006), pp. 3-16 | DOI | MR | Zbl

[2] Fayers, M. Defect 2 spin blocks of symmetric groups and canonical basis coefficients, 2010 http://www.maths.qmul.ac.uk/~mf/papers/spin_wt2.pdf

[3] Fayers, M. The n-bar-core of an m-bar-core, 2010 www.maths.qmul.ac.uk/~mf/papers/barcores.pdf

[4] Fayers, M. A generalisation of core partitions, J. Comb. Theory, Ser. A, Volume 127 (2014), pp. 58-84 | DOI | MR | Zbl

[5] Hoffman, P.; Humphreys, J. Projective representations of the symmetric groups, Oxford Mathematical Monographs, Clarendon Press, 1992

[6] James, G.; Kerber, A. The representation theory of the symmetric group, Encyclopædia of Mathematics and its Applications, 16, Cambridge University Press, 1981

[7] Macdonald, I. Symmetric Functions and Hall Polynomials 2nd edition, Oxford Mathematical Monographs, Oxford University Press, 1998

[8] Olsson, J. Frobenius symbols for partitions and Degrees of Spin Characters, Math. Scand., Volume 61 (1987), pp. 223-247 | DOI | MR | Zbl

[9] Olsson, J. A theorem on the cores of partitions, J. Comb. Theory, Ser. A, Volume 116 (2009), pp. 733-740 | DOI | MR | Zbl

Cited by Sources: