Given a finite irreducible Coxeter group with a fixed Coxeter element , we define the Coxeter pop-tsack torsing operator by , where is the join in the noncrossing partition lattice of the set of reflections lying weakly below in the absolute order. This definition serves as a “Bessis dual” version of the first author’s notion of a Coxeter pop-stack sorting operator, which, in turn, generalizes the pop-stack sorting map on symmetric groups. We show that if is coincidental or of type , then the identity element of is the unique periodic point of and the maximum size of a forward orbit of is the Coxeter number of . In each of these types, we obtain a natural lift from to the dual braid monoid of . We also prove that is coincidental if and only if it has a unique forward orbit of size . For arbitrary , we show that the forward orbit of under has size and is isolated in the sense that none of the non-identity elements of the orbit have preimages lying outside of the orbit.
Accepted:
Published online:
DOI: 10.5802/alco.226
Keywords: Coxeter group, pop-stack sorting, noncrossing partition, dual braid monoid
Defant, Colin 1; Williams, Nathan 2
@article{ALCO_2022__5_3_559_0, author = {Defant, Colin and Williams, Nathan}, title = {Coxeter {Pop-Tsack} {Torsing}}, journal = {Algebraic Combinatorics}, pages = {559--581}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {3}, year = {2022}, doi = {10.5802/alco.226}, zbl = {07555120}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.226/} }
TY - JOUR AU - Defant, Colin AU - Williams, Nathan TI - Coxeter Pop-Tsack Torsing JO - Algebraic Combinatorics PY - 2022 SP - 559 EP - 581 VL - 5 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.226/ DO - 10.5802/alco.226 LA - en ID - ALCO_2022__5_3_559_0 ER -
Defant, Colin; Williams, Nathan. Coxeter Pop-Tsack Torsing. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 559-581. doi : 10.5802/alco.226. https://alco.centre-mersenne.org/articles/10.5802/alco.226/
[1] How many pop-stacks does it take to sort a permutation? (2021) (https://arxiv.org/abs/2012.05275)
[2] Positroids and non-crossing partitions, Trans. Amer. Math. Soc., Volume 368 (2016) no. 1, pp. 337-363 | DOI | MR | Zbl
[3] Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., 202, American Mathematical Society, Providence, RI, 2009 no. 949, x+159 pages | DOI | MR | Zbl
[4] Pop-stack sorting and its image: permutations with overlapping runs, Acta Math. Univ. Comenian. (N.S.), Volume 88 (2019) no. 3, pp. 395-402 | MR
[5] Flip-sort and combinatorial aspects of pop-stack sorting, Discrete Math. Theor. Comput. Sci., Volume 22 (2021) no. 2, Paper no. 4, 39 pages | MR | Zbl
[6] Noncrossing partitions for the group , SIAM J. Discrete Math., Volume 18 (2004) no. 2, pp. 397-417 | DOI | MR | Zbl
[7] The dual braid monoid, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl
[8] Finite complex reflection arrangements are , Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl
[9] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | DOI | MR | Zbl
[10] Stabilized-interval-free permutations and chord-connected permutations, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (Discrete Math. Theor. Comput. Sci. Proc., AT) (2014), pp. 801-813 | MR | Zbl
[11] ’s for Artin groups of finite type, Geom. Dedicata, Volume 94 (2002), pp. 225-250 | DOI | MR | Zbl
[12] Non-crossing partition lattices in finite real reflection groups, Trans. Amer. Math. Soc., Volume 360 (2008) no. 4, pp. 1983-2005 | DOI | MR | Zbl
[13] Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., Volume 12 (1971), pp. 57-61 | DOI | MR | Zbl
[14] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl
[15] Counting stabilized-interval-free permutations, J. Integer Seq., Volume 7 (2004) no. 1, Paper no. 04.1.8, 7 pages | MR | Zbl
[16] Conjugacy classes in the Weyl group, Compositio Math., Volume 25 (1972), pp. 1-59 | Numdam | MR | Zbl
[17] Enumerating permutations sortable by passes through a pop-stack, Adv. in Appl. Math., Volume 108 (2019), pp. 79-96 | DOI | MR | Zbl
[18] Counting pop-stacked permutations in polynomial time (2019) (https://arxiv.org/abs/1908.08910)
[19] Pop-Stack-Sorting for Coxeter Groups (2021) (https://arxiv.org/abs/2104.02675)
[20] -pop stack sortable permutations and 2-avoidance, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.54, 15 pages | DOI | MR | Zbl
[21] CHEVIE – A system for computing and processing generic character tables, Appl. Algebra Eng. Commun. Comput., Volume 7 (1996) no. 3, pp. 175-210 | DOI | MR | Zbl
[22] Two-stack-sorting with pop stacks, Australas. J. Combin., Volume 74 (2019), pp. 179-195 | MR | Zbl
[23] Noncrossing partitions, clusters and the Coxeter plane, Sém. Lothar. Combin., Volume 63 (2010), Paper no. B63b, 32 pages | MR | Zbl
[24] On non-conjugate Coxeter elements in well-generated reflection groups, Math. Z., Volume 285 (2017) no. 3-4, pp. 1041-1062 | DOI | MR | Zbl
[25] et al. GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4 (1997)
[26] Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl
[27] SageMath, the Sage Mathematics Software System (Version 9.2) (2021) (https://www.sagemath.org)
[28] noncollinear points determine at least directions, J. Combin. Theory Ser. A, Volume 33 (1982) no. 3, pp. 343-347 | DOI | MR | Zbl
Cited by Sources: