Coxeter Pop-Tsack Torsing
Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 559-581.

Given a finite irreducible Coxeter group W with a fixed Coxeter element c, we define the Coxeter pop-tsack torsing operator Pop T :WW by Pop T (w)=w·π T (w) -1 , where π T (w) is the join in the noncrossing partition lattice NC(w,c) of the set of reflections lying weakly below w in the absolute order. This definition serves as a “Bessis dual” version of the first author’s notion of a Coxeter pop-stack sorting operator, which, in turn, generalizes the pop-stack sorting map on symmetric groups. We show that if W is coincidental or of type D, then the identity element of W is the unique periodic point of Pop T and the maximum size of a forward orbit of Pop T is the Coxeter number h of W. In each of these types, we obtain a natural lift from W to the dual braid monoid of W. We also prove that W is coincidental if and only if it has a unique forward orbit of size h. For arbitrary W, we show that the forward orbit of c -1 under Pop T has size h and is isolated in the sense that none of the non-identity elements of the orbit have preimages lying outside of the orbit.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.226
Classification: 05E16, 05A05, 05A18
Keywords: Coxeter group, pop-stack sorting, noncrossing partition, dual braid monoid

Defant, Colin 1; Williams, Nathan 2

1 Princeton University
2 University of Texas at Dallas
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_3_559_0,
     author = {Defant, Colin and Williams, Nathan},
     title = {Coxeter {Pop-Tsack} {Torsing}},
     journal = {Algebraic Combinatorics},
     pages = {559--581},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {3},
     year = {2022},
     doi = {10.5802/alco.226},
     zbl = {07555120},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.226/}
}
TY  - JOUR
AU  - Defant, Colin
AU  - Williams, Nathan
TI  - Coxeter Pop-Tsack Torsing
JO  - Algebraic Combinatorics
PY  - 2022
SP  - 559
EP  - 581
VL  - 5
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.226/
DO  - 10.5802/alco.226
LA  - en
ID  - ALCO_2022__5_3_559_0
ER  - 
%0 Journal Article
%A Defant, Colin
%A Williams, Nathan
%T Coxeter Pop-Tsack Torsing
%J Algebraic Combinatorics
%D 2022
%P 559-581
%V 5
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.226/
%R 10.5802/alco.226
%G en
%F ALCO_2022__5_3_559_0
Defant, Colin; Williams, Nathan. Coxeter Pop-Tsack Torsing. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 559-581. doi : 10.5802/alco.226. https://alco.centre-mersenne.org/articles/10.5802/alco.226/

[1] Albert, Michael; Vatter, Vincent How many pop-stacks does it take to sort a permutation? (2021) (https://arxiv.org/abs/2012.05275)

[2] Ardila, Federico; Rincón, Felipe; Williams, Lauren Positroids and non-crossing partitions, Trans. Amer. Math. Soc., Volume 368 (2016) no. 1, pp. 337-363 | DOI | MR | Zbl

[3] Armstrong, Drew Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., 202, American Mathematical Society, Providence, RI, 2009 no. 949, x+159 pages | DOI | MR | Zbl

[4] Asinowski, Andrei; Banderier, Cyril; Billey, Sara; Hackl, Benjamin; Linusson, Svante Pop-stack sorting and its image: permutations with overlapping runs, Acta Math. Univ. Comenian. (N.S.), Volume 88 (2019) no. 3, pp. 395-402 | MR

[5] Asinowski, Andrei; Banderier, Cyril; Hackl, Benjamin Flip-sort and combinatorial aspects of pop-stack sorting, Discrete Math. Theor. Comput. Sci., Volume 22 (2021) no. 2, Paper no. 4, 39 pages | MR | Zbl

[6] Athanasiadis, Christos A.; Reiner, Victor Noncrossing partitions for the group D n , SIAM J. Discrete Math., Volume 18 (2004) no. 2, pp. 397-417 | DOI | MR | Zbl

[7] Bessis, David The dual braid monoid, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl

[8] Bessis, David Finite complex reflection arrangements are K(π,1), Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl

[9] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | DOI | MR | Zbl

[10] Blitvić, Natasha Stabilized-interval-free permutations and chord-connected permutations, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (Discrete Math. Theor. Comput. Sci. Proc., AT) (2014), pp. 801-813 | MR | Zbl

[11] Brady, Thomas; Watt, Colum K(π,1)’s for Artin groups of finite type, Geom. Dedicata, Volume 94 (2002), pp. 225-250 | DOI | MR | Zbl

[12] Brady, Thomas; Watt, Colum Non-crossing partition lattices in finite real reflection groups, Trans. Amer. Math. Soc., Volume 360 (2008) no. 4, pp. 1983-2005 | DOI | MR | Zbl

[13] Brieskorn, Egbert Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., Volume 12 (1971), pp. 57-61 | DOI | MR | Zbl

[14] Brieskorn, Egbert; Saito, Kyoji Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl

[15] Callan, David Counting stabilized-interval-free permutations, J. Integer Seq., Volume 7 (2004) no. 1, Paper no. 04.1.8, 7 pages | MR | Zbl

[16] Carter, Roger W. Conjugacy classes in the Weyl group, Compositio Math., Volume 25 (1972), pp. 1-59 | Numdam | MR | Zbl

[17] Claesson, Anders; Guðmundsson, Bjarki Á. Enumerating permutations sortable by k passes through a pop-stack, Adv. in Appl. Math., Volume 108 (2019), pp. 79-96 | DOI | MR | Zbl

[18] Claesson, Anders; Guðmundsson, Bjarki Á.; Pantone, Jay Counting pop-stacked permutations in polynomial time (2019) (https://arxiv.org/abs/1908.08910)

[19] Defant, Colin Pop-Stack-Sorting for Coxeter Groups (2021) (https://arxiv.org/abs/2104.02675)

[20] Elder, Murray; Goh, Yoong Kuan k-pop stack sortable permutations and 2-avoidance, Electron. J. Combin., Volume 28 (2021) no. 1, Paper no. 1.54, 15 pages | DOI | MR | Zbl

[21] Geck, Meinolf; Hiss, Gerhard; Lübeck, Frank; Malle, Gunter; Pfeiffer, Götz CHEVIE – A system for computing and processing generic character tables, Appl. Algebra Eng. Commun. Comput., Volume 7 (1996) no. 3, pp. 175-210 | DOI | MR | Zbl

[22] Pudwell, Lara; Smith, Rebecca Two-stack-sorting with pop stacks, Australas. J. Combin., Volume 74 (2019), pp. 179-195 | MR | Zbl

[23] Reading, Nathan Noncrossing partitions, clusters and the Coxeter plane, Sém. Lothar. Combin., Volume 63 (2010), Paper no. B63b, 32 pages | MR | Zbl

[24] Reiner, Victor; Ripoll, Vivien; Stump, Christian On non-conjugate Coxeter elements in well-generated reflection groups, Math. Z., Volume 285 (2017) no. 3-4, pp. 1041-1062 | DOI | MR | Zbl

[25] Schönert, Martin et al. GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4 (1997)

[26] Springer, Tonny A. Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl

[27] SageMath, the Sage Mathematics Software System (Version 9.2) (2021) (https://www.sagemath.org)

[28] Ungar, Peter 2N noncollinear points determine at least 2N directions, J. Combin. Theory Ser. A, Volume 33 (1982) no. 3, pp. 343-347 | DOI | MR | Zbl

Cited by Sources: