Counting on the variety of modules over the quantum plane
Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 583-592.

Let ő∂ be a fixed nonzero element in a finite field ūĚĒĹ q with q elements. In this article, we count the number of pairs (A,B) of n√ón matrices over ūĚĒĹ q satisfying AB=ő∂BA by giving a generating function. This generalizes a generating function of Feit and Fine that counts pairs of commuting matrices. Our result can be also viewed as the point count of the variety of modules over the quantum plane XY=ő∂YX, whose geometry was described by Chen and Lu.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.230
Classification: 10X99,  14A12,  11L05
Keywords: quantum plane, matrix equations, counting over finite fields, generating functions
Huang, Yifeng 1

1 University of Michigan Dept. of Mathematics 530 Church St Ann Arbor MI 48109 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2022__5_3_583_0,
     author = {Huang, Yifeng},
     title = {Counting on the variety of modules over the quantum plane},
     journal = {Algebraic Combinatorics},
     pages = {583--592},
     publisher = {The Combinatorics Consortium},
     volume = {5},
     number = {3},
     year = {2022},
     doi = {10.5802/alco.230},
     zbl = {07555121},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.230/}
}
TY  - JOUR
AU  - Huang, Yifeng
TI  - Counting on the variety of modules over the quantum plane
JO  - Algebraic Combinatorics
PY  - 2022
DA  - 2022///
SP  - 583
EP  - 592
VL  - 5
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.230/
UR  - https://zbmath.org/?q=an%3A07555121
UR  - https://doi.org/10.5802/alco.230
DO  - 10.5802/alco.230
LA  - en
ID  - ALCO_2022__5_3_583_0
ER  - 
%0 Journal Article
%A Huang, Yifeng
%T Counting on the variety of modules over the quantum plane
%J Algebraic Combinatorics
%D 2022
%P 583-592
%V 5
%N 3
%I The Combinatorics Consortium
%U https://doi.org/10.5802/alco.230
%R 10.5802/alco.230
%G en
%F ALCO_2022__5_3_583_0
Huang, Yifeng. Counting on the variety of modules over the quantum plane. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 583-592. doi : 10.5802/alco.230. https://alco.centre-mersenne.org/articles/10.5802/alco.230/

[1] Bavula, Vladimir Classification of the simple modules of the quantum Weyl algebra and the quantum plane, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publ.), Volume 40, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 193-201 | MR | Zbl

[2] Bryan, Jim; Morrison, Andrew Motivic classes of commuting varieties via power structures, J. Algebraic Geom., Volume 24 (2015) no. 1, pp. 183-199 | DOI | MR | Zbl

[3] Chen, Xinhong; Lu, Meining Varieties of modules over the quantum plane (2019) | arXiv

[4] Chen, Xinhong; Wang, Weiqiang Anti-commuting matrices, Trans. Amer. Math. Soc., Volume 373 (2020) no. 3, pp. 1597-1617 | DOI | Zbl

[5] Cohen, H.; Lenstra, H. W. Jr. Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) (Lecture Notes in Math.), Volume 1068, Springer, Berlin, 1984, pp. 33-62 | DOI | MR | Zbl

[6] Feit, Walter; Fine, N. J. Pairs of commuting matrices over a finite field, Duke Math. J., Volume 27 (1960), pp. 91-94 | MR | Zbl

[7] Fine, N. J.; Herstein, I. N. The probability that a matrix be nilpotent, Illinois J. Math., Volume 2 (1958), pp. 499-504 | MR | Zbl

[8] Fulman, Jason; Guralnick, Robert Enumeration of commuting pairs in Lie algebras over finite fields, Ann. Comb., Volume 22 (2018) no. 2, pp. 295-316 | DOI | MR | Zbl

[9] Fulman, Jason; Jiménez Rolland, Rita; Wilson, Jennifer C. H. Generating functions and statistics on spaces of maximal tori in classical Lie groups, New York J. Math., Volume 23 (2017), pp. 165-191 | MR | Zbl

[10] Gerstenhaber, Murray On dominance and varieties of commuting matrices, Ann. of Math. (2), Volume 73 (1961), pp. 324-348 | DOI | MR

[11] Hausel, Tam√°s; Rodriguez-Villegas, Fernando Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz, Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 | DOI | MR | Zbl

[12] Jacobson, Nathan Basic algebra. II, W. H. Freeman and Company, New York, 1989, xviii+686 pages

[13] Lehrer, G. I. Rational tori, semisimple orbits and the topology of hyperplane complements, Comment. Math. Helv., Volume 67 (1992) no. 2, pp. 226-251 | DOI | MR | Zbl

[14] Levy, Paul Commuting varieties of Lie algebras over fields of prime characteristic, J. Algebra, Volume 250 (2002) no. 2, pp. 473-484 | DOI | MR | Zbl

[15] Motzkin, T. S.; Taussky, Olga Pairs of matrices with property L. II, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 387-401 | MR | Zbl

[16] Richardson, R. W. Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Volume 38 (1979) no. 3, pp. 311-327 | Numdam | MR | Zbl

Cited by Sources: