Let be a fixed nonzero element in a finite field with elements. In this article, we count the number of pairs of matrices over satisfying by giving a generating function. This generalizes a generating function of Feit and Fine that counts pairs of commuting matrices. Our result can be also viewed as the point count of the variety of modules over the quantum plane , whose geometry was described by Chen and Lu.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.230
Keywords: quantum plane, matrix equations, counting over finite fields, generating functions
Huang, Yifeng 1
@article{ALCO_2022__5_3_583_0, author = {Huang, Yifeng}, title = {Counting on the variety of modules over the quantum plane}, journal = {Algebraic Combinatorics}, pages = {583--592}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {3}, year = {2022}, doi = {10.5802/alco.230}, zbl = {07555121}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.230/} }
TY - JOUR AU - Huang, Yifeng TI - Counting on the variety of modules over the quantum plane JO - Algebraic Combinatorics PY - 2022 SP - 583 EP - 592 VL - 5 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.230/ DO - 10.5802/alco.230 LA - en ID - ALCO_2022__5_3_583_0 ER -
Huang, Yifeng. Counting on the variety of modules over the quantum plane. Algebraic Combinatorics, Volume 5 (2022) no. 3, pp. 583-592. doi : 10.5802/alco.230. https://alco.centre-mersenne.org/articles/10.5802/alco.230/
[1] Classification of the simple modules of the quantum Weyl algebra and the quantum plane, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publ.), Volume 40, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 193-201 | MR | Zbl
[2] Motivic classes of commuting varieties via power structures, J. Algebraic Geom., Volume 24 (2015) no. 1, pp. 183-199 | DOI | MR | Zbl
[3] Varieties of modules over the quantum plane (2019) | arXiv
[4] Anti-commuting matrices, Trans. Amer. Math. Soc., Volume 373 (2020) no. 3, pp. 1597-1617 | DOI | Zbl
[5] Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) (Lecture Notes in Math.), Volume 1068, Springer, Berlin, 1984, pp. 33-62 | DOI | MR | Zbl
[6] Pairs of commuting matrices over a finite field, Duke Math. J., Volume 27 (1960), pp. 91-94 | MR | Zbl
[7] The probability that a matrix be nilpotent, Illinois J. Math., Volume 2 (1958), pp. 499-504 | MR | Zbl
[8] Enumeration of commuting pairs in Lie algebras over finite fields, Ann. Comb., Volume 22 (2018) no. 2, pp. 295-316 | DOI | MR | Zbl
[9] Generating functions and statistics on spaces of maximal tori in classical Lie groups, New York J. Math., Volume 23 (2017), pp. 165-191 | MR | Zbl
[10] On dominance and varieties of commuting matrices, Ann. of Math. (2), Volume 73 (1961), pp. 324-348 | DOI | MR
[11] Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz, Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 | DOI | MR | Zbl
[12] Basic algebra. II, W. H. Freeman and Company, New York, 1989, xviii+686 pages
[13] Rational tori, semisimple orbits and the topology of hyperplane complements, Comment. Math. Helv., Volume 67 (1992) no. 2, pp. 226-251 | DOI | MR | Zbl
[14] Commuting varieties of Lie algebras over fields of prime characteristic, J. Algebra, Volume 250 (2002) no. 2, pp. 473-484 | DOI | MR | Zbl
[15] Pairs of matrices with property . II, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 387-401 | MR | Zbl
[16] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Volume 38 (1979) no. 3, pp. 311-327 | Numdam | MR | Zbl
Cited by Sources: