If is a finite group then there is an integer such that for and or (mod 6), there is a Steiner triple system on points for which If is a Steiner triple system then there is an integer such that for and or mod there is a Steiner triple system on points having as an -invariant subsystem such that and induces on .
Revised:
Accepted:
Published online:
Keywords: Steiner triple system, Automorphism group
Doyen, Jean 1; Kantor, William M. 2
@article{ALCO_2022__5_4_593_0, author = {Doyen, Jean and Kantor, William M.}, title = {Automorphism groups of {Steiner} triple systems}, journal = {Algebraic Combinatorics}, pages = {593--608}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {4}, year = {2022}, doi = {10.5802/alco.240}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.240/} }
TY - JOUR AU - Doyen, Jean AU - Kantor, William M. TI - Automorphism groups of Steiner triple systems JO - Algebraic Combinatorics PY - 2022 SP - 593 EP - 608 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.240/ DO - 10.5802/alco.240 LA - en ID - ALCO_2022__5_4_593_0 ER -
%0 Journal Article %A Doyen, Jean %A Kantor, William M. %T Automorphism groups of Steiner triple systems %J Algebraic Combinatorics %D 2022 %P 593-608 %V 5 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.240/ %R 10.5802/alco.240 %G en %F ALCO_2022__5_4_593_0
Doyen, Jean; Kantor, William M. Automorphism groups of Steiner triple systems. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 593-608. doi : 10.5802/alco.240. https://alco.centre-mersenne.org/articles/10.5802/alco.240/
[1] Embedding partial Steiner triple systems so that their automorphisms extend, J. Combin. Des., Volume 13 (2005) no. 6, pp. 466-470 | DOI | MR | Zbl
[2] Embeddings of Steiner triple systems, Discrete Math., Volume 5 (1973), pp. 229-239 | DOI | MR | Zbl
[3] Automorphism groups of designs with , Discrete Math., Volume 342 (2019) no. 10, pp. 2886-2892 | DOI | MR | Zbl
[4] On the existence of automorphism free Steiner triple systems, J. Algebra, Volume 34 (1975), pp. 430-443 | DOI | MR | Zbl
[5] On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory Ser. A, Volume 25 (1978) no. 2, pp. 97-104 | DOI | MR | Zbl
[6] Concerning triple systems, Math. Ann., Volume 43 (1893) no. 2-3, pp. 271-285 | DOI | MR
[7] A course in combinatorics, Cambridge University Press, Cambridge, 2001, xiv+602 pages | DOI | MR
Cited by Sources: