Modified Macdonald polynomials and the multispecies zero-range process: I
Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 243-284.

In this paper we prove a new combinatorial formula for the modified Macdonald polynomials H ˜ λ (X;q,t), motivated by connections to the theory of interacting particle systems from statistical mechanics. The formula involves a new statistic called queue inversions on fillings of tableaux. This statistic is closely related to the multiline queues which were recently used to give a formula for the Macdonald polynomials P λ (X;q,t). In the case q=1 and X=(1,1,,1), that formula had also been shown to compute stationary probabilities for a particle system known as the multispecies ASEP on a ring, and it is natural to ask whether a similar connection exists between the modified Macdonald polynomials and a suitable statistical mechanics model. In a sequel to this work, we demonstrate such a connection, showing that the stationary probabilities of the multispecies totally asymmetric zero-range process (mTAZRP) on a ring can be computed using tableaux formulas with the queue inversion statistic. This connection extends to arbitrary X=(x 1 ,,x n ); the x i play the role of site-dependent jump rates for the mTAZRP.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.248
Classification: 05E05, 05A10, 05A19, 05A05, 33D52
Keywords: modified Macdonald polynomials, TAZRP, tableaux, zero range process

Ayyer, Arvind 1; Mandelshtam, Olya 2; Martin, James B 3

1 Department of Mathematics Indian Institute of Science Bangalore 560 012, India
2 Department of Combinatorics and Optimization University of Waterloo Waterloo, ON, Canada
3 Department of Statistics University of Oxford UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_1_243_0,
     author = {Ayyer, Arvind and Mandelshtam, Olya and Martin, James B},
     title = {Modified {Macdonald} polynomials and the multispecies zero-range process: {I}},
     journal = {Algebraic Combinatorics},
     pages = {243--284},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {1},
     year = {2023},
     doi = {10.5802/alco.248},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.248/}
}
TY  - JOUR
AU  - Ayyer, Arvind
AU  - Mandelshtam, Olya
AU  - Martin, James B
TI  - Modified Macdonald polynomials and the multispecies zero-range process: I
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 243
EP  - 284
VL  - 6
IS  - 1
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.248/
DO  - 10.5802/alco.248
LA  - en
ID  - ALCO_2023__6_1_243_0
ER  - 
%0 Journal Article
%A Ayyer, Arvind
%A Mandelshtam, Olya
%A Martin, James B
%T Modified Macdonald polynomials and the multispecies zero-range process: I
%J Algebraic Combinatorics
%D 2023
%P 243-284
%V 6
%N 1
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.248/
%R 10.5802/alco.248
%G en
%F ALCO_2023__6_1_243_0
Ayyer, Arvind; Mandelshtam, Olya; Martin, James B. Modified Macdonald polynomials and the multispecies zero-range process: I. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 243-284. doi : 10.5802/alco.248. https://alco.centre-mersenne.org/articles/10.5802/alco.248/

[1] Ayyer, Arvind; Mandelshtam, Olya; Martin, James B. Modified Macdonald polynomials and the multispecies zero range process: II (2022) (https://arxiv.org/abs/2209.09859)

[2] Cantini, Luigi Asymmetric simple exclusion process with open boundaries and Koornwinder polynomials, Annales Henri Poincaré (4), Volume 18, Springer (2017), pp. 1121-1151 | DOI | MR | Zbl

[3] Cantini, Luigi; de Gier, Jan; Wheeler, Michael Matrix product formula for Macdonald polynomials, J. Phys. A, Volume 48 (2015) no. 38, Paper no. 384001, 25 pages | DOI | MR | Zbl

[4] Cantini, Luigi; Garbali, Alexandr; de Gier, Jan; Wheeler, Michael Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries, J. Phys. A, Volume 49 (2016) no. 44, Paper no. 444002, 23 pages | DOI | MR | Zbl

[5] Corteel, Sylvie; Haglund, James; Mandelshtam, Olya; Mason, Sarah; Williams, Lauren K. Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials, Sel. Math., Volume 28 (2022), Paper no. 32, 33 pages | DOI | MR | Zbl

[6] Corteel, Sylvie; Mandelshtam, Olya; Williams, Lauren K. Combinatorics of the two-species ASEP and Koornwinder moments, Adv. Math., Volume 321 (2017), pp. 160-204 | DOI | MR | Zbl

[7] Corteel, Sylvie; Mandelshtam, Olya; Williams, Lauren K. From multiline queues to Macdonald polynomials via the exclusion process, Amer. J. Math., Volume 144 (2019), pp. 395-436 | DOI | MR | Zbl

[8] Corteel, Sylvie; Williams, Lauren K. Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials, Duke Math. J., Volume 159 (2011) no. 3, pp. 385-415 | DOI | MR | Zbl

[9] Corteel, Sylvie; Williams, Lauren K. Macdonald-Koornwinder moments and the two-species exclusion process, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 2275-2317 | DOI | MR | Zbl

[10] Ferrari, Pablo A.; Martin, James B. Stationary distributions of multi-type totally asymmetric exclusion processes, Ann. Probab., Volume 35 (2007), pp. 807-832 | DOI | MR | Zbl

[11] Garbali, Alexandr; Wheeler, Michael Modified Macdonald polynomials and integrability, Comm. Math. Phys., Volume 374 (2020) no. 3, pp. 1809-1876 | DOI | MR | Zbl

[12] Garsia, Adriano M.; Haiman, Mark A graded representation model for Macdonald’s polynomials., Proceedings of the National Academy of Sciences, Volume 90 (1993) no. 8, pp. 3607-3610 | DOI | MR | Zbl

[13] Gasper, George; Rahman, Mizan Basic hypergeometric series, 96, Cambridge University Press, 2004 | DOI

[14] Girard, Albert Invention nouvelle en l’algèbre, Amsterdam, 1629

[15] Haglund, James; Haiman, Mark; Loehr, Nick A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc, Volume 18 (2004), pp. 735-761 | DOI | MR

[16] Haglund, James; Haiman, Mark; Loehr, Nick; Remmel, Jeff B.; Ulyanov, Alexander A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl

[17] Haiman, Mark Macdonald polynomials and geometry, New perspectives in algebraic combinatorics (Math. Sci. Res. Inst. Publ.), Volume 38, Cambridge University Press, 1999, pp. 207-254 | MR | Zbl

[18] Haiman, Mark Notes on Macdonald polynomials and the geometry of Hilbert schemes, Symmetric functions 2001: surveys of developments and perspectives (NATO Sci. Ser. II Math. Phys. Chem.), Volume 74, Kluwer Acad. Publ., Dordrecht, 2002, pp. 1-64 | DOI | MR | Zbl

[19] Kuniba, Atsuo; Okado, Masato; Watanabe, Satoshi Integrable structure of multispecies zero range process, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), Paper no. 044, 29 pages | DOI | MR | Zbl

[20] Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl

[21] Loehr, Nicholas A. Bijective proofs of some coinversion identities related to Macdonald polynomials, 2022 | arXiv

[22] Loehr, Nick; Niese, Elizabeth A bijective proof of a factorization formula for specialized Macdonald polynomials, Ann. Comb., Volume 16 (2012) no. 4, pp. 815-828 | DOI | MR | Zbl

[23] Macdonald, Ian A new class of symmetric functions, Sém. Lothar. Combin, Volume 20 (1988)

[24] Macdonald, Ian Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR

[25] Marsh, Bethany; Rietsch, Konstanze Parametrizations of flag varieties, Represent. Theory, Volume 8 (2004), p. 212-242 (electronic) | DOI | MR | Zbl

[26] Martin, James B. Stationary distributions of the multi-type ASEP, Electron. J. Probab., Volume 25 (2020), p. 41 pp. | DOI | MR | Zbl

[27] Sasamoto, Tomohiro One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach, J. Phys. A, Volume 32 (1999) no. 41, pp. 7109-7131 | DOI | MR | Zbl

[28] Spitzer, Frank Interaction of Markov processes, Adv. Math., Volume 5 (1970) no. 2, pp. 246 - 290 | DOI | MR | Zbl

[29] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR

[30] Stanley, Richard P. Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiv+626 pages | MR

[31] Takeyama, Yoshihiro Algebraic construction of multi-species q-Boson system (2015) (Arxiv preprint https://arxiv.org/abs/1507.02033)

[32] Uchiyama, Masaru; Sasamoto, Tomohiro; Wadati, Miki Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials, J. Phys. A, Volume 37 (2004) no. 18, pp. 4985-5002 | DOI | MR | Zbl

Cited by Sources: