In this paper we prove a new combinatorial formula for the modified Macdonald polynomials , motivated by connections to the theory of interacting particle systems from statistical mechanics. The formula involves a new statistic called queue inversions on fillings of tableaux. This statistic is closely related to the multiline queues which were recently used to give a formula for the Macdonald polynomials . In the case and , that formula had also been shown to compute stationary probabilities for a particle system known as the multispecies ASEP on a ring, and it is natural to ask whether a similar connection exists between the modified Macdonald polynomials and a suitable statistical mechanics model. In a sequel to this work, we demonstrate such a connection, showing that the stationary probabilities of the multispecies totally asymmetric zero-range process (mTAZRP) on a ring can be computed using tableaux formulas with the queue inversion statistic. This connection extends to arbitrary ; the play the role of site-dependent jump rates for the mTAZRP.
Revised:
Accepted:
Published online:
Keywords: modified Macdonald polynomials, TAZRP, tableaux, zero range process
Ayyer, Arvind 1; Mandelshtam, Olya 2; Martin, James B 3
@article{ALCO_2023__6_1_243_0, author = {Ayyer, Arvind and Mandelshtam, Olya and Martin, James B}, title = {Modified {Macdonald} polynomials and the multispecies zero-range process: {I}}, journal = {Algebraic Combinatorics}, pages = {243--284}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.248}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.248/} }
TY - JOUR AU - Ayyer, Arvind AU - Mandelshtam, Olya AU - Martin, James B TI - Modified Macdonald polynomials and the multispecies zero-range process: I JO - Algebraic Combinatorics PY - 2023 SP - 243 EP - 284 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.248/ DO - 10.5802/alco.248 LA - en ID - ALCO_2023__6_1_243_0 ER -
%0 Journal Article %A Ayyer, Arvind %A Mandelshtam, Olya %A Martin, James B %T Modified Macdonald polynomials and the multispecies zero-range process: I %J Algebraic Combinatorics %D 2023 %P 243-284 %V 6 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.248/ %R 10.5802/alco.248 %G en %F ALCO_2023__6_1_243_0
Ayyer, Arvind; Mandelshtam, Olya; Martin, James B. Modified Macdonald polynomials and the multispecies zero-range process: I. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 243-284. doi : 10.5802/alco.248. https://alco.centre-mersenne.org/articles/10.5802/alco.248/
[1] Modified Macdonald polynomials and the multispecies zero range process: II (2022) (https://arxiv.org/abs/2209.09859)
[2] Asymmetric simple exclusion process with open boundaries and Koornwinder polynomials, Annales Henri Poincaré (4), Volume 18, Springer (2017), pp. 1121-1151 | DOI | MR | Zbl
[3] Matrix product formula for Macdonald polynomials, J. Phys. A, Volume 48 (2015) no. 38, Paper no. 384001, 25 pages | DOI | MR | Zbl
[4] Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries, J. Phys. A, Volume 49 (2016) no. 44, Paper no. 444002, 23 pages | DOI | MR | Zbl
[5] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials, Sel. Math., Volume 28 (2022), Paper no. 32, 33 pages | DOI | MR | Zbl
[6] Combinatorics of the two-species ASEP and Koornwinder moments, Adv. Math., Volume 321 (2017), pp. 160-204 | DOI | MR | Zbl
[7] From multiline queues to Macdonald polynomials via the exclusion process, Amer. J. Math., Volume 144 (2019), pp. 395-436 | DOI | MR | Zbl
[8] Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials, Duke Math. J., Volume 159 (2011) no. 3, pp. 385-415 | DOI | MR | Zbl
[9] Macdonald-Koornwinder moments and the two-species exclusion process, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 2275-2317 | DOI | MR | Zbl
[10] Stationary distributions of multi-type totally asymmetric exclusion processes, Ann. Probab., Volume 35 (2007), pp. 807-832 | DOI | MR | Zbl
[11] Modified Macdonald polynomials and integrability, Comm. Math. Phys., Volume 374 (2020) no. 3, pp. 1809-1876 | DOI | MR | Zbl
[12] A graded representation model for Macdonald’s polynomials., Proceedings of the National Academy of Sciences, Volume 90 (1993) no. 8, pp. 3607-3610 | DOI | MR | Zbl
[13] Basic hypergeometric series, 96, Cambridge University Press, 2004 | DOI
[14] Invention nouvelle en l’algèbre, Amsterdam, 1629
[15] A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc, Volume 18 (2004), pp. 735-761 | DOI | MR
[16] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR | Zbl
[17] Macdonald polynomials and geometry, New perspectives in algebraic combinatorics (Math. Sci. Res. Inst. Publ.), Volume 38, Cambridge University Press, 1999, pp. 207-254 | MR | Zbl
[18] Notes on Macdonald polynomials and the geometry of Hilbert schemes, Symmetric functions 2001: surveys of developments and perspectives (NATO Sci. Ser. II Math. Phys. Chem.), Volume 74, Kluwer Acad. Publ., Dordrecht, 2002, pp. 1-64 | DOI | MR | Zbl
[19] Integrable structure of multispecies zero range process, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), Paper no. 044, 29 pages | DOI | MR | Zbl
[20] Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | MR | Zbl
[21] Bijective proofs of some coinversion identities related to Macdonald polynomials, 2022 | arXiv
[22] A bijective proof of a factorization formula for specialized Macdonald polynomials, Ann. Comb., Volume 16 (2012) no. 4, pp. 815-828 | DOI | MR | Zbl
[23] A new class of symmetric functions, Sém. Lothar. Combin, Volume 20 (1988)
[24] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR
[25] Parametrizations of flag varieties, Represent. Theory, Volume 8 (2004), p. 212-242 (electronic) | DOI | MR | Zbl
[26] Stationary distributions of the multi-type ASEP, Electron. J. Probab., Volume 25 (2020), p. 41 pp. | DOI | MR | Zbl
[27] One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach, J. Phys. A, Volume 32 (1999) no. 41, pp. 7109-7131 | DOI | MR | Zbl
[28] Interaction of Markov processes, Adv. Math., Volume 5 (1970) no. 2, pp. 246 - 290 | DOI | MR | Zbl
[29] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[30] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiv+626 pages | MR
[31] Algebraic construction of multi-species -Boson system (2015) (Arxiv preprint https://arxiv.org/abs/1507.02033)
[32] Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials, J. Phys. A, Volume 37 (2004) no. 18, pp. 4985-5002 | DOI | MR | Zbl
Cited by Sources: