The -measure of an integer partition was recently introduced by Andrews, Bhattacharjee and Dastidar. In this paper, we establish trivariate generating function identities counting both the length and the -measure for partitions and distinct partitions, respectively. The -measure case for partitions extends a result of Andrews, Bhattacharjee and Dastidar.
Revised:
Accepted:
Published online:
Keywords: partition, distinct partition, generating function, $k$-measure, Durfee square
Andrews, George E. 1; Chern, Shane 2; Li, Zhitai 1
@article{ALCO_2022__5_6_1353_0, author = {Andrews, George E. and Chern, Shane and Li, Zhitai}, title = {On the $k$-measure of partitions and distinct partitions}, journal = {Algebraic Combinatorics}, pages = {1353--1361}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {6}, year = {2022}, doi = {10.5802/alco.253}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.253/} }
TY - JOUR AU - Andrews, George E. AU - Chern, Shane AU - Li, Zhitai TI - On the $k$-measure of partitions and distinct partitions JO - Algebraic Combinatorics PY - 2022 SP - 1353 EP - 1361 VL - 5 IS - 6 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.253/ DO - 10.5802/alco.253 LA - en ID - ALCO_2022__5_6_1353_0 ER -
%0 Journal Article %A Andrews, George E. %A Chern, Shane %A Li, Zhitai %T On the $k$-measure of partitions and distinct partitions %J Algebraic Combinatorics %D 2022 %P 1353-1361 %V 5 %N 6 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.253/ %R 10.5802/alco.253 %G en %F ALCO_2022__5_6_1353_0
Andrews, George E.; Chern, Shane; Li, Zhitai. On the $k$-measure of partitions and distinct partitions. Algebraic Combinatorics, Volume 5 (2022) no. 6, pp. 1353-1361. doi : 10.5802/alco.253. https://alco.centre-mersenne.org/articles/10.5802/alco.253/
[1] -identities of Auluck, Carlitz, and Rogers, Duke Math. J., Volume 33 (1966), pp. 575-581 | MR | Zbl
[2] The Theory of Partitions, Cambridge University Press, Cambridge, 1998
[3] Ramanujan’s Lost Notebook, Part II, Springer, New York, 2009
[4] Sequences in partitions, Integers, Volume 22 (2022), p. Paper No. A32, 9 pp. | MR | Zbl
[5] A bibasic Heine transformation formula and Ramanujan’s transformations, Analytic number theory, modular forms and -hypergeometric series, Springer, Cham, 2017, pp. 99-122 | DOI | MR | Zbl
[6] On -measures and Durfee squares of partitions (2022) | arXiv
[7] Basic Hypergeometric Series, Second Edition, Cambridge University Press, Cambridge, 2004 | DOI
[8] Developments in the Theory of Partitions, Ph. D. Thesis, University of New South Wales (1979) | MR
[9] Combinatory Analysis, Vol. 2, A.M.S. Chelsea Publishing, Providence, 1984
[10] A constructive theory of partitions, arranged in three acts, an interact and an exodion, Amer. J. Math., Volume 5 (1882), pp. 251-330 | DOI
Cited by Sources: