Cuspidal ribbon tableaux in affine type A
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 285-319.

For any convex preorder on the set of positive roots of affine type A, we classify and construct all associated cuspidal and semicuspidal skew shapes. These combinatorial objects correspond to cuspidal and semicuspidal skew Specht modules for the Khovanov-Lauda-Rouquier algebra of affine type A. Cuspidal skew shapes are ribbons, and we show that every skew shape has a unique ordered tiling by cuspidal ribbons. This tiling data provides an upper bound, in the bilexicographic order on Kostant partitions, for labels of simple factors of Specht modules.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.260
Classification: 20C08, 20C30, 05E10, 05E16, 17B22, 06A11
Keywords: Young diagrams, ribbon tableaux, Specht modules, Khovanov-Lauda-Rouquier algebras, quiver Hecke algebras

Abbasian, Dina 1; Difulvio, Lena 1; Muth, Robert 2; Pasternak, Gabrielle 1; Sholtes, Isabella 1; Sinclair, Frances 1

1 Washington & Jefferson College 60 S. Lincoln St. Washington PA 15301 (USA)
2 Duquesne University Department of Mathematics and Computer Science 600 Forbes Ave. Pittsburgh PA 15282 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_285_0,
     author = {Abbasian, Dina and Difulvio, Lena and Muth, Robert and Pasternak, Gabrielle and Sholtes, Isabella and Sinclair, Frances},
     title = {Cuspidal ribbon tableaux in affine type {A}},
     journal = {Algebraic Combinatorics},
     pages = {285--319},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.260},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.260/}
}
TY  - JOUR
AU  - Abbasian, Dina
AU  - Difulvio, Lena
AU  - Muth, Robert
AU  - Pasternak, Gabrielle
AU  - Sholtes, Isabella
AU  - Sinclair, Frances
TI  - Cuspidal ribbon tableaux in affine type A
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 285
EP  - 319
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.260/
DO  - 10.5802/alco.260
LA  - en
ID  - ALCO_2023__6_2_285_0
ER  - 
%0 Journal Article
%A Abbasian, Dina
%A Difulvio, Lena
%A Muth, Robert
%A Pasternak, Gabrielle
%A Sholtes, Isabella
%A Sinclair, Frances
%T Cuspidal ribbon tableaux in affine type A
%J Algebraic Combinatorics
%D 2023
%P 285-319
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.260/
%R 10.5802/alco.260
%G en
%F ALCO_2023__6_2_285_0
Abbasian, Dina; Difulvio, Lena; Muth, Robert; Pasternak, Gabrielle; Sholtes, Isabella; Sinclair, Frances. Cuspidal ribbon tableaux in affine type A. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 285-319. doi : 10.5802/alco.260. https://alco.centre-mersenne.org/articles/10.5802/alco.260/

[1] Ariki, S.; Mathas, A. The number of simple modules of the Hecke algebras of type G(r,1,n), Math Z., Volume 233 (2000), pp. 601-623 | DOI | MR | Zbl

[2] Ariki, S.; Park, E.; Speyer, L. Specht modules for quiver Hecke algebras of type C, Publ. Res. Inst. Math. Sci., Volume 55 (2019), pp. 565-626 | DOI | MR | Zbl

[3] Baumann, P.; Kamnitzer, J.; Tingley, P. Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci., Volume 120 (2014), pp. 113-205 | DOI | Numdam | Zbl

[4] Beck, J. Convex bases of PBW type for quantum affine algebras, Commun. Math. Phys., Volume 165 | MR | Zbl

[5] Brundan, J.; Kleshchev, A. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., Volume 178 (2009), pp. 451-484 | MR | Zbl

[6] Evseev, A.; Kleshchev, A. Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality, Ann. of Math., Volume 188 (2018), pp. 453-512 | DOI | MR | Zbl

[7] Fomin, S.; Stanton, D. Rim hook lattices, Algebra i Analiz, Volume 9 (1997), pp. 140-150 | Zbl

[8] Hu, J.; Mathas, A. Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, Adv. Math., Volume 225 (2010), pp. 598-642 | DOI | MR | Zbl

[9] Ito, K. The classification of convex orders on affine root systems, Comm. Algebra, Volume 29 (2001), pp. 5605-5630 | DOI | MR | Zbl

[10] James, G. On the decomposition matrices of the symmetric groups II, J. Algebra, Volume 43 (1976), pp. 45-54 | DOI | MR | Zbl

[11] James, G. The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, New York/Heidelberg/Berlin, 1978 | DOI

[12] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, pp. xxii-400 | DOI | MR

[13] Khovanov, M.; Lauda, A. A diagrammatic approach to categorification of quantum groups I, Represent. Theory, Volume 13 (2009), pp. 309-347 | DOI | MR | Zbl

[14] Khovanov, M.; Lauda, A. A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 2685-2700 | DOI | MR | Zbl

[15] Kleshchev, A. Linear and projective representations of symmetric groups, Cambridge University Press, Cambridge, 2005 | DOI

[16] Kleshchev, A. Cuspidal systems for affine Khovanov-Lauda-Rouquier algebras, Math. Z., Volume 279 (2014), pp. 691-726 | DOI | MR | Zbl

[17] Kleshchev, A.; Mathas, A.; Ram, A. Universal graded Specht modules for cyclotomic Hecke algebras, Proc. Lond. Math. Soc., Volume 105 (2012) no. 6, pp. 1245-1289 | DOI | MR | Zbl

[18] Kleshchev, A.; Muth, R. Stratifying KLR algebras of affine ADE types, J. Algebra, Volume 475 (2017), pp. 133-170 | DOI | MR | Zbl

[19] Lascoux, A.; Leclerc, B.; Thibon, J.-Y. Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997), pp. 1041-1068 | DOI | MR | Zbl

[20] Littlewood, D. E. Modular representations of symmetric groups, Proc. Roy. Soc. London Ser. A, Volume 209 (1951), pp. 333-353 | MR | Zbl

[21] Mathas, A. Iwahori-Hecke algebras and Schur algebras of the symmetric group, 15, American Mathematical Society

[22] McNamara, P. Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type, Math. Z., Volume 287 (2017), pp. 243-286 | DOI | MR | Zbl

[23] Muth, R. Graded skew Specht modules and cuspidal modules for Khovanov-Lauda-Rouquier algebras of affine type A, Algebr. Represent. Theory, Volume 22 (2019), pp. 977-1015 | DOI | MR | Zbl

[24] Rouquier, R. 2-Kac-Moody algebras | arXiv

[25] Sheffield, S. Ribbon tilings and multidimensional height functions, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 4789-4813 | DOI | MR | Zbl

[26] Tingley, P.; Webster, B. Mirković-Vilonen polytopes and Khovanov-Lauda-Rouquier algebras, Compos. Math., Volume 152 (2016), pp. 1648-1696 | DOI | Zbl

Cited by Sources: