We describe an approach, via Malle’s permutation on the set of irreducible characters of a reflection group , that gives a uniform derivation of the Chapuy–Stump formula for the enumeration of reflection factorizations of a Coxeter element . It also recovers its weighted generalization by delMas, Reiner, and Hameister, and further produces structural results for factorization formulas of arbitrary regular elements.
Revised:
Accepted:
Published online:
Keywords: factorization enumeration, full twist, regular elements, Frobenius lemma
Douvropoulos, Theo 1
@article{ALCO_2023__6_2_359_0, author = {Douvropoulos, Theo}, title = {On enumerating factorizations in reflection groups}, journal = {Algebraic Combinatorics}, pages = {359--385}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.261}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.261/} }
TY - JOUR AU - Douvropoulos, Theo TI - On enumerating factorizations in reflection groups JO - Algebraic Combinatorics PY - 2023 SP - 359 EP - 385 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.261/ DO - 10.5802/alco.261 LA - en ID - ALCO_2023__6_2_359_0 ER -
Douvropoulos, Theo. On enumerating factorizations in reflection groups. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 359-385. doi : 10.5802/alco.261. https://alco.centre-mersenne.org/articles/10.5802/alco.261/
[1] Schur indices and splitting fields of the unitary reflection groups, J. Algebra, Volume 38 (1976) no. 2, pp. 318-342 | DOI | MR | Zbl
[2] Sur le corps de définition d’un groupe de réflexions complexe, Comm. Algebra, Volume 25 (1997) no. 8, pp. 2703-2716 | DOI | MR | Zbl
[3] Zariski theorems and diagrams for braid groups, Invent. Math., Volume 145 (2001) no. 3, pp. 487-507 | DOI | MR | Zbl
[4] Garside categories, periodic loops and cyclic sets, ArXiv Mathematics e-prints (2006) | arXiv
[5] Finite complex reflection arrangements are , Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl
[6] Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc., Volume 84 (1978) no. 3, pp. 417-426 | DOI | MR | Zbl
[7] The BMM symmetrising trace conjecture for groups , , , , , J. Symbolic Comput., Volume 96 (2020), pp. 62-84 | DOI | MR | Zbl
[8] Introduction to complex reflection groups and their braid groups, Lecture Notes in Mathematics, 1988, Springer-Verlag, Berlin, 2010, xii+138 pages | DOI | MR
[9] Split spetses for primitive reflection groups, Astérisque (2014) no. 359, p. vi+146 | Numdam | MR | Zbl
[10] Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., Volume 500 (1998), pp. 127-190 | MR | Zbl
[11] Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) (Progr. Math.), Volume 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73-139 | MR | Zbl
[12] Enumerative properties of generalized associahedra, Sém. Lothar. Combin., Volume 51 (2004/05), p. Art. B51b, 16 pages | MR | Zbl
[13] Counting factorizations of Coxeter elements into products of reflections, J. Lond. Math. Soc. (2), Volume 90 (2014) no. 3, pp. 919-939 | DOI | MR | Zbl
[14] Invariants of finite groups generated by reflections, Amer. J. Math., Volume 77 (1955), pp. 778-782 | DOI | MR | Zbl
[15] The product of the generators of a finite group generated by reflections, Duke Math. J., Volume 18 (1951), pp. 765-782 | MR | Zbl
[16] Letter to E. Looijenga on March 9, 1974, pp. 101-111 (Reprinted in the diploma thesis of P. Kluitmann)
[17] A refined count of Coxeter element reflection factorizations, Electron. J. Combin., Volume 25 (2018) no. 1, p. Paper 1.28, 11 pages | MR | Zbl
[18] The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 4 (1959), pp. 63-71 | MR
[19] On enumerating factorizations in reflection groups, Sém. Lothar. Combin., Volume 82B (2020), p. Art. 92, 12 | MR | Zbl
[20] Applications of Geometric Techniques in Coxeter-Catalan Combinatorics, ProQuest LLC, Ann Arbor, MI, 2017, 106 pages Thesis (Ph.D.)–University of Minnesota | MR
[21] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR
[22] Proof of the Broué-Malle-Rouquier conjecture in characteristic zero (after I. Losev and I. Marin–G. Pfeiffer), Arnold Math. J., Volume 3 (2017) no. 3, pp. 445-449 | DOI | MR | Zbl
[23] Gesammelte Abhandlungen. Bd. I–III. Herausgegeben von J.-P. Serre., Berlin-Heidelberg-New York: Springer-Verlag 1968. | Zbl
[24] CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., Volume 7 (1996), pp. 175-210 | DOI | Zbl
[25] Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000 | MR
[26] Catalan numbers for complex reflection groups, Amer. J. Math., Volume 134 (2012) no. 6, pp. 1491-1502 | DOI | MR | Zbl
[27] Ueber Riemannische Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891) no. 1, pp. 1-60 | DOI | MR
[28] Ueber die Anzahl der Riemannischen Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 55 (1901) no. 1, pp. 53-66 | DOI | MR
[29] Some combinatorial problems associated with products of conjugacy classes of the symmetric group, J. Combin. Theory Ser. A, Volume 49 (1988) no. 2, pp. 363-369 | DOI | MR | Zbl
[30] Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001 | DOI | MR
[31] Ausgezeichnete Basen erweiterter affiner Wurzelgitter, Bonner Mathematische Schriften, 185, Universität Bonn, Mathematisches Institut, Bonn, 1987 | MR
[32] Graphs on surfaces and their applications. With an appendix by Don B. Zagier, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR
[33] Unitary reflection groups, Australian Mathematical Society Lecture Series, 20, Cambridge University Press, Cambridge, 2009 | MR
[34] -analogues of factorization problems in the symmetric group, European J. Combin., Volume 58 (2016), pp. 75-95 | DOI | MR | Zbl
[35] Reflection factorizations of Singer cycles, J. Algebraic Combin., Volume 40 (2014) no. 3, pp. 663-691 | DOI | MR | Zbl
[36] The complement of the bifurcation variety of a simple singularity, Invent. Math., Volume 23 (1974), pp. 105-116 | DOI | MR | Zbl
[37] Finite-dimensional quotients of Hecke algebras, Algebra Number Theory, Volume 9 (2015) no. 2, pp. 493-502 | DOI | MR | Zbl
[38] On the rationality and fake degrees of characters of cyclotomic algebras, J. Math. Sci. Univ. Tokyo, Volume 6 (1999) no. 4, pp. 647-677 | MR | Zbl
[39] Unitary matrix integrals, primitive factorizations, and Jucys-Murphy elements, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (Discrete Math. Theor. Comput. Sci. Proc., AN), pp. 403-411 | MR | Zbl
[40] The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR
[41] Deligne-Lusztig theoretic derivation for Weyl groups of the number of reflection factorizations of a Coxeter element, Proc. Amer. Math. Soc., Volume 144 (2016) no. 3, pp. 937-941 | DOI | MR | Zbl
[42] A remark on the irreducible characters and fake degrees of finite real reflection groups, Invent. Math., Volume 120 (1995) no. 3, pp. 447-454 | DOI | MR | Zbl
[43] Complex Reflection Groups and Fake Degrees, ArXiv Mathematics e-prints (1998) | arXiv
[44] Chains in the noncrossing partition lattice, SIAM J. Discrete Math., Volume 22 (2008) no. 3, pp. 875-886 | DOI | MR | Zbl
[45] Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | DOI | MR | Zbl
[46] Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[47] Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl
[48] A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl
[49] Finite reflection groups, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 493-504 | DOI | MR | Zbl
[50] SageMath, the Sage Mathematics Software System (Version 8.3.beta3) (2018) (http://www.sagemath.org)
Cited by Sources: