On enumerating factorizations in reflection groups
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 359-385.

We describe an approach, via Malle’s permutation Ψ on the set of irreducible characters Irr(W) of a reflection group W, that gives a uniform derivation of the Chapuy–Stump formula for the enumeration of reflection factorizations of a Coxeter element cW. It also recovers its weighted generalization by delMas, Reiner, and Hameister, and further produces structural results for factorization formulas of arbitrary regular elements.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.261
Classification: 05A15, 05E99, 20C08, 20F55
Keywords: factorization enumeration, full twist, regular elements, Frobenius lemma

Douvropoulos, Theo 1

1 University of Massachussets at Amherst Department of Mathematics and Statistics
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_359_0,
     author = {Douvropoulos, Theo},
     title = {On enumerating factorizations in reflection groups},
     journal = {Algebraic Combinatorics},
     pages = {359--385},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.261},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.261/}
}
TY  - JOUR
AU  - Douvropoulos, Theo
TI  - On enumerating factorizations in reflection groups
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 359
EP  - 385
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.261/
DO  - 10.5802/alco.261
LA  - en
ID  - ALCO_2023__6_2_359_0
ER  - 
%0 Journal Article
%A Douvropoulos, Theo
%T On enumerating factorizations in reflection groups
%J Algebraic Combinatorics
%D 2023
%P 359-385
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.261/
%R 10.5802/alco.261
%G en
%F ALCO_2023__6_2_359_0
Douvropoulos, Theo. On enumerating factorizations in reflection groups. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 359-385. doi : 10.5802/alco.261. https://alco.centre-mersenne.org/articles/10.5802/alco.261/

[1] Benard, Mark Schur indices and splitting fields of the unitary reflection groups, J. Algebra, Volume 38 (1976) no. 2, pp. 318-342 | DOI | MR | Zbl

[2] Bessis, David Sur le corps de définition d’un groupe de réflexions complexe, Comm. Algebra, Volume 25 (1997) no. 8, pp. 2703-2716 | DOI | MR | Zbl

[3] Bessis, David Zariski theorems and diagrams for braid groups, Invent. Math., Volume 145 (2001) no. 3, pp. 487-507 | DOI | MR | Zbl

[4] Bessis, David Garside categories, periodic loops and cyclic sets, ArXiv Mathematics e-prints (2006) | arXiv

[5] Bessis, David Finite complex reflection arrangements are K(π,1), Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl

[6] Beynon, Meurig; Lusztig, George Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc., Volume 84 (1978) no. 3, pp. 417-426 | DOI | MR | Zbl

[7] Boura, Christina; Chavli, Eirini; Chlouveraki, Maria; Karvounis, Konstantinos The BMM symmetrising trace conjecture for groups G 4 , G 5 , G 6 , G 7 , G 8 , J. Symbolic Comput., Volume 96 (2020), pp. 62-84 | DOI | MR | Zbl

[8] Broué, Michel Introduction to complex reflection groups and their braid groups, Lecture Notes in Mathematics, 1988, Springer-Verlag, Berlin, 2010, xii+138 pages | DOI | MR

[9] Broué, Michel; Malle, Gunter; Michel, Jean Split spetses for primitive reflection groups, Astérisque (2014) no. 359, p. vi+146 | Numdam | MR | Zbl

[10] Broué, Michel; Malle, Gunter; Rouquier, Raphaël Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math., Volume 500 (1998), pp. 127-190 | MR | Zbl

[11] Broué, Michel; Michel, Jean Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) (Progr. Math.), Volume 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73-139 | MR | Zbl

[12] Chapoton, Frédéric Enumerative properties of generalized associahedra, Sém. Lothar. Combin., Volume 51 (2004/05), p. Art. B51b, 16 pages | MR | Zbl

[13] Chapuy, Guillaume; Stump, Christian Counting factorizations of Coxeter elements into products of reflections, J. Lond. Math. Soc. (2), Volume 90 (2014) no. 3, pp. 919-939 | DOI | MR | Zbl

[14] Chevalley, Claude Invariants of finite groups generated by reflections, Amer. J. Math., Volume 77 (1955), pp. 778-782 | DOI | MR | Zbl

[15] Coxeter, Harold S. M. The product of the generators of a finite group generated by reflections, Duke Math. J., Volume 18 (1951), pp. 765-782 | MR | Zbl

[16] Deligne, Pierre Letter to E. Looijenga on March 9, 1974, pp. 101-111 (Reprinted in the diploma thesis of P. Kluitmann)

[17] delMas, Elise; Hameister, Thomas; Reiner, Victor A refined count of Coxeter element reflection factorizations, Electron. J. Combin., Volume 25 (2018) no. 1, p. Paper 1.28, 11 pages | MR | Zbl

[18] Dénes, József The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 4 (1959), pp. 63-71 | MR

[19] Douvropoulos, Theo On enumerating factorizations in reflection groups, Sém. Lothar. Combin., Volume 82B (2020), p. Art. 92, 12 | MR | Zbl

[20] Douvropoulos, Theodosios Applications of Geometric Techniques in Coxeter-Catalan Combinatorics, ProQuest LLC, Ann Arbor, MI, 2017, 106 pages Thesis (Ph.D.)–University of Minnesota | MR

[21] Eisenbud, David Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR

[22] Etingof, Pavel Proof of the Broué-Malle-Rouquier conjecture in characteristic zero (after I. Losev and I. Marin–G. Pfeiffer), Arnold Math. J., Volume 3 (2017) no. 3, pp. 445-449 | DOI | MR | Zbl

[23] Frobenius, Ferdinand Gesammelte Abhandlungen. Bd. I–III. Herausgegeben von J.-P. Serre., Berlin-Heidelberg-New York: Springer-Verlag 1968. | Zbl

[24] Geck, Meinolf; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G. CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., Volume 7 (1996), pp. 175-210 | DOI | Zbl

[25] Geck, Meinolf; Pfeiffer, Götz Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000 | MR

[26] Gordon, Iain G.; Griffeth, Stephen Catalan numbers for complex reflection groups, Amer. J. Math., Volume 134 (2012) no. 6, pp. 1491-1502 | DOI | MR | Zbl

[27] Hurwitz, Adolf Ueber Riemannische Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891) no. 1, pp. 1-60 | DOI | MR

[28] Hurwitz, Adolf Ueber die Anzahl der Riemannischen Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 55 (1901) no. 1, pp. 53-66 | DOI | MR

[29] Jackson, David M. Some combinatorial problems associated with products of conjugacy classes of the symmetric group, J. Combin. Theory Ser. A, Volume 49 (1988) no. 2, pp. 363-369 | DOI | MR | Zbl

[30] Kane, Richard Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001 | DOI | MR

[31] Kluitmann, Paul Ausgezeichnete Basen erweiterter affiner Wurzelgitter, Bonner Mathematische Schriften, 185, Universität Bonn, Mathematisches Institut, Bonn, 1987 | MR

[32] Lando, Sergei K.; Zvonkin, Alexander K. Graphs on surfaces and their applications. With an appendix by Don B. Zagier, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR

[33] Lehrer, Gustav I.; Taylor, Donald E. Unitary reflection groups, Australian Mathematical Society Lecture Series, 20, Cambridge University Press, Cambridge, 2009 | MR

[34] Lewis, Joel B.; Morales, Alejandro H. GL n (F q )-analogues of factorization problems in the symmetric group, European J. Combin., Volume 58 (2016), pp. 75-95 | DOI | MR | Zbl

[35] Lewis, Joel B.; Reiner, Victor; Stanton, Dennis Reflection factorizations of Singer cycles, J. Algebraic Combin., Volume 40 (2014) no. 3, pp. 663-691 | DOI | MR | Zbl

[36] Looijenga, Eduard The complement of the bifurcation variety of a simple singularity, Invent. Math., Volume 23 (1974), pp. 105-116 | DOI | MR | Zbl

[37] Losev, Ivan Finite-dimensional quotients of Hecke algebras, Algebra Number Theory, Volume 9 (2015) no. 2, pp. 493-502 | DOI | MR | Zbl

[38] Malle, Gunter On the rationality and fake degrees of characters of cyclotomic algebras, J. Math. Sci. Univ. Tokyo, Volume 6 (1999) no. 4, pp. 647-677 | MR | Zbl

[39] Matsumoto, Sho; Novak, Jonathan Unitary matrix integrals, primitive factorizations, and Jucys-Murphy elements, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (Discrete Math. Theor. Comput. Sci. Proc., AN), pp. 403-411 | MR | Zbl

[40] Michel, Jean The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR

[41] Michel, Jean Deligne-Lusztig theoretic derivation for Weyl groups of the number of reflection factorizations of a Coxeter element, Proc. Amer. Math. Soc., Volume 144 (2016) no. 3, pp. 937-941 | DOI | MR | Zbl

[42] Opdam, Eric M. A remark on the irreducible characters and fake degrees of finite real reflection groups, Invent. Math., Volume 120 (1995) no. 3, pp. 447-454 | DOI | MR | Zbl

[43] Opdam, Eric M. Complex Reflection Groups and Fake Degrees, ArXiv Mathematics e-prints (1998) | arXiv

[44] Reading, Nathan Chains in the noncrossing partition lattice, SIAM J. Discrete Math., Volume 22 (2008) no. 3, pp. 875-886 | DOI | MR | Zbl

[45] Serre, Jean-Pierre Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | DOI | MR | Zbl

[46] Shephard, Geoffrey C.; Todd, John A. Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[47] Springer, Tony A. Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl

[48] Springer, Tony A. A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978) no. 3, pp. 279-293 | DOI | MR | Zbl

[49] Steinberg, Robert Finite reflection groups, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 493-504 | DOI | MR | Zbl

[50] The Sage Developers SageMath, the Sage Mathematics Software System (Version 8.3.beta3) (2018) (http://www.sagemath.org)

Cited by Sources: