On plethysms and Sylow branching coefficients
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 321-357.

We prove a recursive formula for plethysm coefficients of the form a λ,(m) μ , encompassing those which arise in a long-standing conjecture of Foulkes. This also generalises results on plethysms due to Bruns–Conca–Varbaro and de Boeck–Paget–Wildon. From this we deduce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2. Further, letting P n denote a Sylow 2-subgroup of S n , we show that almost all Sylow branching coefficients of S n corresponding to the trivial character of P n are positive.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.262
Classification: 20C15, 20C30
Keywords: character deflation, plethysm, Sylow branching coefficients

Law, Stacey 1; Okitani, Yuji 2

1 Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge CB3 0WB UK
2 Department of Mathematics University of California Berkeley CA 94720 USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_321_0,
     author = {Law, Stacey and Okitani, Yuji},
     title = {On plethysms and {Sylow} branching coefficients},
     journal = {Algebraic Combinatorics},
     pages = {321--357},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.262},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.262/}
}
TY  - JOUR
AU  - Law, Stacey
AU  - Okitani, Yuji
TI  - On plethysms and Sylow branching coefficients
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 321
EP  - 357
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.262/
DO  - 10.5802/alco.262
LA  - en
ID  - ALCO_2023__6_2_321_0
ER  - 
%0 Journal Article
%A Law, Stacey
%A Okitani, Yuji
%T On plethysms and Sylow branching coefficients
%J Algebraic Combinatorics
%D 2023
%P 321-357
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.262/
%R 10.5802/alco.262
%G en
%F ALCO_2023__6_2_321_0
Law, Stacey; Okitani, Yuji. On plethysms and Sylow branching coefficients. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 321-357. doi : 10.5802/alco.262. https://alco.centre-mersenne.org/articles/10.5802/alco.262/

[1] Bessenrodt, C.; Bowman, C.; Paget, R. The classification of multiplicity-free plethysms of Schur functions, Trans. Amer. Math. Soc., Volume 375 (2022) no. 7, pp. 5151-5194 | DOI | MR | Zbl

[2] Briand, E.; Orellana, R.; Rosas, M. Rectangular symmetries for coefficients of symmetric functions, Electron. J. Combin., Volume 22 (2015) no. 3, p. Paper 3.15, 18 pages | DOI | MR | Zbl

[3] Brion, M. Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math., Volume 80 (1993) no. 4, pp. 347-371 | DOI | MR | Zbl

[4] Bruns, W.; Conca, A.; Varbaro, M. Relations between the minors of a generic matrix, Adv. Math., Volume 244 (2013), pp. 171-206 | DOI | MR | Zbl

[5] Bürgisser, P.; Christandl, M.; Ikenmeyer, C. Even partitions in plethysms, J. Algebra, Volume 328 (2011), pp. 322-329 | DOI | MR | Zbl

[6] de Boeck, M. On the structure of Foulkes modules for the symmetric group, Ph. D. Thesis, University of Kent (2015)

[7] de Boeck, M.; Paget, R.; Wildon, M. Plethysms of symmetric functions and highest weight representations, Trans. Amer. Math. Soc., Volume 374 (2021) no. 11, pp. 8013-8043 | DOI | MR | Zbl

[8] Erdös, P.; Lehner, J. The distribution of the number of summands in the partitions of a positive integer, Duke Math. J., Volume 8 (1941), pp. 335-345 | DOI | MR | Zbl

[9] Evseev, A.; Paget, R.; Wildon, M. Character deflations and a generalization of the Murnaghan-Nakayama rule, J. Group Theory, Volume 17 (2014) no. 6, pp. 1035-1070 | DOI | MR | Zbl

[10] Foulkes, H. O. Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc., Volume 25 (1950), pp. 205-209 | DOI | MR | Zbl

[11] Giannelli, E. Characters of odd degree of symmetric groups, J. Lond. Math. Soc. (2), Volume 96 (2017) no. 1, pp. 1-14 | DOI | MR | Zbl

[12] Giannelli, E.; Kleshchev, A.; Navarro, G.; Tiep, P. H. Restriction of odd degree characters and natural correspondences, Int. Math. Res. Not. IMRN (2017) no. 20, pp. 6089-6118 | MR | Zbl

[13] Giannelli, E.; Law, S. On permutation characters and Sylow p-subgroups of S n , J. Algebra, Volume 506 (2018), pp. 409-428 | DOI | MR | Zbl

[14] Giannelli, E.; Law, S. Sylow branching coefficients for symmetric groups, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 2, pp. 697-728 | DOI | MR | Zbl

[15] Giannelli, E.; Law, S.; Long, J.; Vallejo, C. Sylow branching coefficients and a conjecture of Malle and Navarro, Bull. Lond. Math. Soc., Volume 54 (2022) no. 2, pp. 552-567 | DOI | MR

[16] Giannelli, E.; Navarro, G. Restricting irreducible characters to Sylow p-subgroups, Proc. Amer. Math. Soc., Volume 146 (2018) no. 5, pp. 1963-1976 | DOI | MR | Zbl

[17] Isaacs, I. M. Character theory of finite groups, Dover Publications, Inc., New York, 1994, xii+303 pages | MR

[18] Isaacs, I. M.; Navarro, G.; Olsson, J. B.; Tiep, P. H. Character restrictions and multiplicities in symmetric groups, J. Algebra, Volume 478 (2017), pp. 271-282 | DOI | MR | Zbl

[19] James, G.; Kerber, A. The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981, xxviii+510 pages | MR

[20] James, G. D. The representation theory of the symmetric groups, Lecture Notes in Mathematics, 682, Springer, Berlin, 1978, v+156 pages | DOI

[21] Langley, T. M.; Remmel, J. B. The plethysm s λ [s μ ] at hook and near-hook shapes, Electron. J. Combin., Volume 11 (2004) no. 1, p. Research Paper 11, 26 pages | DOI | MR | Zbl

[22] Law, S. On Problems in the Representation Theory of Symmetric Groups, Ph. D. Thesis, University of Cambridge (2019)

[23] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR

[24] Manivel, L. Gaussian maps and plethysm, Algebraic geometry (Catania, 1993/Barcelona, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 200, Dekker, New York, 1998, pp. 91-117 | MR | Zbl

[25] Manivel, L.; Michałek, M. Effective constructions in plethysms and Weintraub’s conjecture, Algebr. Represent. Theory, Volume 17 (2014) no. 2, pp. 433-443 | DOI | MR | Zbl

[26] Navarro, G. Character tables and Sylow subgroups revisited, Group theory and computation (Indian Stat. Inst. Ser.), Springer, Singapore, 2018, pp. 197-206 | DOI

[27] Olsson, J. B. Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 20, Universität Essen, Fachbereich Mathematik, Essen, 1993, ii+94 pages | MR

[28] Paget, R.; Wildon, M. Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, Proc. Lond. Math. Soc. (3), Volume 118 (2019) no. 5, pp. 1153-1187 | DOI | MR | Zbl

[29] Stanley, R. P. Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR

[30] Stanley, R. P. Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295-319 | Zbl

[31] Thrall, R. M. On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., Volume 64 (1942), pp. 371-388 | DOI | MR | Zbl

[32] Weintraub, S. H. Some observations on plethysms, J. Algebra, Volume 129 (1990) no. 1, pp. 103-114 | DOI | MR | Zbl

Cited by Sources: