The Lagrangian geometry of matroids was introduced in [2] through the construction of the conormal fan of a matroid . We used the conormal fan to give a Lagrangian-geometric interpretation of the -vector of the broken circuit complex of : its entries are the degrees of the mixed intersections of certain convex piecewise linear functions and on the conormal fan of . By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski’s conjecture that this -vector is a log-concave sequence.
This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial realization of the intersection-theoretic computation above: we write the -th mixed intersection of and explicitly as a sum of biflags corresponding to the nbc bases of internal activity .
Revised:
Accepted:
Published online:
Keywords: basis activity, conormal fan, $h$-vector, matroid
Ardila, Federico 1; Denham, Graham 2; Huh, June 3
@article{ALCO_2023__6_2_387_0, author = {Ardila, Federico and Denham, Graham and Huh, June}, title = {Lagrangian combinatorics of matroids}, journal = {Algebraic Combinatorics}, pages = {387--411}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.263}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.263/} }
TY - JOUR AU - Ardila, Federico AU - Denham, Graham AU - Huh, June TI - Lagrangian combinatorics of matroids JO - Algebraic Combinatorics PY - 2023 SP - 387 EP - 411 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.263/ DO - 10.5802/alco.263 LA - en ID - ALCO_2023__6_2_387_0 ER -
%0 Journal Article %A Ardila, Federico %A Denham, Graham %A Huh, June %T Lagrangian combinatorics of matroids %J Algebraic Combinatorics %D 2023 %P 387-411 %V 6 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.263/ %R 10.5802/alco.263 %G en %F ALCO_2023__6_2_387_0
Ardila, Federico; Denham, Graham; Huh, June. Lagrangian combinatorics of matroids. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 387-411. doi : 10.5802/alco.263. https://alco.centre-mersenne.org/articles/10.5802/alco.263/
[1] Hodge theory for combinatorial geometries, Ann. of Math. (2), Volume 188 (2018) no. 2, pp. 381-452 | DOI | MR | Zbl
[2] Lagrangian geometry of matroids, J. Amer. Math. Soc (2022) (to appear) | DOI
[3] Valuations for matroid polytope subdivisions, Canad. J. Math., Volume 62 (2010) no. 6, pp. 1228-1245 | DOI | MR | Zbl
[4] Tautological classes of matroids (2021) | arXiv
[5] The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia Math. Appl.), Volume 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226-283 | DOI | MR | Zbl
[6] Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics ’93 (Contemp. Math.), Volume 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71-89 | DOI | MR | Zbl
[7] The broken-circuit complex, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 417-433 | DOI | MR | Zbl
[8] The Tutte polynomial part I: General theory, Matroid theory and its applications (C.I.M.E. Summer Sch.), Volume 83, Springer, Heidelberg, 1982, pp. 125-275 | MR | Zbl
[9] The Tutte polynomial, Aequationes Math., Volume 3 (1969), pp. 211-229 | DOI | MR | Zbl
[10] A collection of sets related to the Tutte polynomial of a matroid, Graph Theory Singapore 1983, Springer, 1984, pp. 193-204 | DOI | MR | Zbl
[11] A geometric deletion-restriction formula, Adv. Math., Volume 230 (2012) no. 4-6, pp. 1979-1994 | DOI | MR | Zbl
[12] Valuative invariants for polymatroids, Adv. Math., Volume 225 (2010) no. 4, pp. 1840-1892 | DOI | MR | Zbl
[13] Chow rings of toric varieties defined by atomic lattices, Invent. Math., Volume 155 (2004) no. 3, pp. 515-536 | DOI | MR | Zbl
[14] Chromatic polynomials and logarithmic concavity, J. Combinatorial Theory Ser. B, Volume 16 (1974), pp. 248-254 | DOI | MR | Zbl
[15] The maximum likelihood degree of a very affine variety, Compos. Math., Volume 149 (2013) no. 8, pp. 1245-1266 | DOI | MR | Zbl
[16] -vectors of matroids and logarithmic concavity, Adv. Math., Volume 270 (2015), pp. 49-59 | MR | Zbl
[17] The Tutte polynomial of a morphism of matroids—5. Derivatives as generating functions of Tutte activities, European J. Combin., Volume 34 (2013) no. 8, pp. 1390-1405 | DOI | MR | Zbl
[18] Chern–Schwartz–MacPherson cycles of matroids, Proc. Lond. Math. Soc. (3), Volume 120 (2020) no. 1, pp. 1-27 | DOI | MR | Zbl
[19] Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), Inst. Math. Appl., Southend-on-Sea, 1972, pp. 207-220 | MR
[20] The number of critical points of a product of powers of linear functions, Invent. Math., Volume 120 (1995) no. 1, pp. 1-14 | DOI | MR | Zbl
[21] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR
[22] On dichromatic polynominals, J. Combinatorial Theory, Volume 2 (1967), pp. 301-320 | DOI | MR | Zbl
[23] Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math., Volume 97 (1995) no. 3, pp. 385-401 | Numdam | MR | Zbl
[24] Matroid theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, xi+433 pages (L. M. S. Monographs, No. 8) | MR
[25] Matroid shellability, -systems, and affine hyperplane arrangements, J. Algebraic Combin., Volume 1 (1992) no. 3, pp. 283-300 | DOI | MR | Zbl
Cited by Sources: