Lagrangian combinatorics of matroids
Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 387-411.

The Lagrangian geometry of matroids was introduced in [2] through the construction of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of the mixed intersections of certain convex piecewise linear functions γ and δ on the conormal fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved Brylawski’s conjecture that this h-vector is a log-concave sequence.

This sequel explores the Lagrangian combinatorics of matroids, further developing the combinatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial realization of the intersection-theoretic computation above: we write the k-th mixed intersection of γ and δ explicitly as a sum of biflags corresponding to the nbc bases of internal activity k+1.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.263
Classification: 05B35, 05E45, 14T15, 52B40
Keywords: basis activity, conormal fan, $h$-vector, matroid

Ardila, Federico 1; Denham, Graham 2; Huh, June 3

1 San Francisco State University Dept. of Mathematics 1600 Holloway Ave. San Francisco, CA 94110 USA Universidad de Los Andes Depto. de Matemáticas Cra. 1 #18a-12 Bogotá Colombia
2 University of Western Ontario Dept. of Mathematics Middlesex College London, Ontario Canada N6A 5B7
3 Princeton University Dept. of Mathematics Fine Hall 304 Washington Rd. Princeton, NJ 08544 USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_2_387_0,
     author = {Ardila, Federico and Denham, Graham and Huh, June},
     title = {Lagrangian combinatorics of matroids},
     journal = {Algebraic Combinatorics},
     pages = {387--411},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {2},
     year = {2023},
     doi = {10.5802/alco.263},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.263/}
}
TY  - JOUR
AU  - Ardila, Federico
AU  - Denham, Graham
AU  - Huh, June
TI  - Lagrangian combinatorics of matroids
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 387
EP  - 411
VL  - 6
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.263/
DO  - 10.5802/alco.263
LA  - en
ID  - ALCO_2023__6_2_387_0
ER  - 
%0 Journal Article
%A Ardila, Federico
%A Denham, Graham
%A Huh, June
%T Lagrangian combinatorics of matroids
%J Algebraic Combinatorics
%D 2023
%P 387-411
%V 6
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.263/
%R 10.5802/alco.263
%G en
%F ALCO_2023__6_2_387_0
Ardila, Federico; Denham, Graham; Huh, June. Lagrangian combinatorics of matroids. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 387-411. doi : 10.5802/alco.263. https://alco.centre-mersenne.org/articles/10.5802/alco.263/

[1] Adiprasito, Karim; Huh, June; Katz, Eric Hodge theory for combinatorial geometries, Ann. of Math. (2), Volume 188 (2018) no. 2, pp. 381-452 | DOI | MR | Zbl

[2] Ardila, Federico; Denham, Graham; Huh, June Lagrangian geometry of matroids, J. Amer. Math. Soc (2022) (to appear) | DOI

[3] Ardila, Federico; Fink, Alex; Rincón, Felipe Valuations for matroid polytope subdivisions, Canad. J. Math., Volume 62 (2010) no. 6, pp. 1228-1245 | DOI | MR | Zbl

[4] Berget, Andrew; Eur, Christopher; Spink, Hunter; Tseng, Dennis Tautological classes of matroids (2021) | arXiv

[5] Björner, Anders The homology and shellability of matroids and geometric lattices, Matroid applications (Encyclopedia Math. Appl.), Volume 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226-283 | DOI | MR | Zbl

[6] Brenti, Francesco Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics ’93 (Contemp. Math.), Volume 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71-89 | DOI | MR | Zbl

[7] Brylawski, Thomas The broken-circuit complex, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 417-433 | DOI | MR | Zbl

[8] Brylawski, Thomas The Tutte polynomial part I: General theory, Matroid theory and its applications (C.I.M.E. Summer Sch.), Volume 83, Springer, Heidelberg, 1982, pp. 125-275 | MR | Zbl

[9] Crapo, Henry H. The Tutte polynomial, Aequationes Math., Volume 3 (1969), pp. 211-229 | DOI | MR | Zbl

[10] Dawson, Jeremy E A collection of sets related to the Tutte polynomial of a matroid, Graph Theory Singapore 1983, Springer, 1984, pp. 193-204 | DOI | MR | Zbl

[11] Denham, Graham; Garrousian, Mehdi; Schulze, Mathias A geometric deletion-restriction formula, Adv. Math., Volume 230 (2012) no. 4-6, pp. 1979-1994 | DOI | MR | Zbl

[12] Derksen, Harm; Fink, Alex Valuative invariants for polymatroids, Adv. Math., Volume 225 (2010) no. 4, pp. 1840-1892 | DOI | MR | Zbl

[13] Feichtner, Eva Maria; Yuzvinsky, Sergey Chow rings of toric varieties defined by atomic lattices, Invent. Math., Volume 155 (2004) no. 3, pp. 515-536 | DOI | MR | Zbl

[14] Hoggar, S. G. Chromatic polynomials and logarithmic concavity, J. Combinatorial Theory Ser. B, Volume 16 (1974), pp. 248-254 | DOI | MR | Zbl

[15] Huh, June The maximum likelihood degree of a very affine variety, Compos. Math., Volume 149 (2013) no. 8, pp. 1245-1266 | DOI | MR | Zbl

[16] Huh, June h-vectors of matroids and logarithmic concavity, Adv. Math., Volume 270 (2015), pp. 49-59 | MR | Zbl

[17] Las Vergnas, Michel The Tutte polynomial of a morphism of matroids—5. Derivatives as generating functions of Tutte activities, European J. Combin., Volume 34 (2013) no. 8, pp. 1390-1405 | DOI | MR | Zbl

[18] Lopez de Medrano, Lucia; Rincon, Felipe; Shaw, Kristin Chern–Schwartz–MacPherson cycles of matroids, Proc. Lond. Math. Soc. (3), Volume 120 (2020) no. 1, pp. 1-27 | DOI | MR | Zbl

[19] Mason, J. H. Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), Inst. Math. Appl., Southend-on-Sea, 1972, pp. 207-220 | MR

[20] Orlik, Peter; Terao, Hiroaki The number of critical points of a product of powers of linear functions, Invent. Math., Volume 120 (1995) no. 1, pp. 1-14 | DOI | MR | Zbl

[21] Oxley, James Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR

[22] Tutte, W. T. On dichromatic polynominals, J. Combinatorial Theory, Volume 2 (1967), pp. 301-320 | DOI | MR | Zbl

[23] Varchenko, A. Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math., Volume 97 (1995) no. 3, pp. 385-401 | Numdam | MR | Zbl

[24] Welsh, D. J. A. Matroid theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, xi+433 pages (L. M. S. Monographs, No. 8) | MR

[25] Ziegler, Günter M. Matroid shellability, β-systems, and affine hyperplane arrangements, J. Algebraic Combin., Volume 1 (1992) no. 3, pp. 283-300 | DOI | MR | Zbl

Cited by Sources: