A famous conjecture of Stanley states that his chromatic symmetric function distinguishes trees. As a quasisymmetric analogue, we conjecture that the chromatic quasisymmetric function of Shareshian and Wachs and of Ellzey distinguishes directed trees. This latter conjecture would be implied by an affirmative answer to a question of Hasebe and Tsujie about the -partition enumerator distinguishing posets whose Hasse diagrams are trees. They proved the case of rooted trees and our results include a generalization of their result.
Revised:
Accepted:
Published online:
Keywords: chromatic, quasisymmetric function, digraph, poset, P-partition, rooted tree
Aval, Jean-Christophe 1; Djenabou, Karimatou 2; McNamara, Peter R. W. 3
@article{ALCO_2023__6_3_595_0, author = {Aval, Jean-Christophe and Djenabou, Karimatou and McNamara, Peter R. W.}, title = {Quasisymmetric functions distinguishing trees}, journal = {Algebraic Combinatorics}, pages = {595--614}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.273}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.273/} }
TY - JOUR AU - Aval, Jean-Christophe AU - Djenabou, Karimatou AU - McNamara, Peter R. W. TI - Quasisymmetric functions distinguishing trees JO - Algebraic Combinatorics PY - 2023 SP - 595 EP - 614 VL - 6 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.273/ DO - 10.5802/alco.273 LA - en ID - ALCO_2023__6_3_595_0 ER -
%0 Journal Article %A Aval, Jean-Christophe %A Djenabou, Karimatou %A McNamara, Peter R. W. %T Quasisymmetric functions distinguishing trees %J Algebraic Combinatorics %D 2023 %P 595-614 %V 6 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.273/ %R 10.5802/alco.273 %G en %F ALCO_2023__6_3_595_0
Aval, Jean-Christophe; Djenabou, Karimatou; McNamara, Peter R. W. Quasisymmetric functions distinguishing trees. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 595-614. doi : 10.5802/alco.273. https://alco.centre-mersenne.org/articles/10.5802/alco.273/
[1] -partitions and -positivity, Int. Math. Res. Not. IMRN (2021) no. 14, pp. 10848-10907 | DOI | MR | Zbl
[2] On trees with the same restricted -polynomial and the Prouhet-Tarry-Escott problem, Discrete Math., Volume 340 (2017) no. 6, pp. 1435-1441 | DOI | MR | Zbl
[3] On the smallest trees with the same restricted -polynomial and the rooted -polynomial, Discrete Math., Volume 344 (2021) no. 3, p. 112255 | DOI | MR | Zbl
[4] Proper caterpillars are distinguished by their chromatic symmetric function, Discrete Math., Volume 315 (2014), pp. 158-164 | DOI | MR | Zbl
[5] On quasisymmetric power sums, J. Combin. Theory Ser. A, Volume 175 (2020), p. 105273, 37 | DOI | MR | Zbl
[6] Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, Adv. Math., Volume 204 (2006) no. 4, pp. 204-240 | DOI | MR | Zbl
[7] Chromatic quasisymmetric functions of directed graphs, Sém. Lothar. Combin., Volume 78B (2017), p. Art. 74, 12 | MR | Zbl
[8] A directed graph generalization of chromatic quasisymmetric functions (2017+) | arXiv
[9] On the Chromatic Quasisymmetric Functions of Directed Graphs, ProQuest LLC, Ann Arbor, MI, 2018, 146 pages Thesis (Ph.D.)–University of Miami | MR
[10] On symmetric chromatic polynomials of trees, Senior Honors Thesis, Darmouth College (2003)
[11] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-301 | DOI | MR | Zbl
[12] Order quasisymmetric functions distinguish rooted trees, J. Algebraic Combin., Volume 46 (2017) no. 3-4, pp. 499-515 | DOI | MR | Zbl
[13] The algebra of quasi-symmetric functions is free over the integers, Adv. Math., Volume 164 (2001) no. 2, pp. 283-300 | DOI | MR | Zbl
[14] On an algorithm for comparing the chromatic symmetric functions of trees, Australas. J. Combin., Volume 75 (2019), pp. 210-222 | MR | Zbl
[15] A few more trees the chromatic symmetric function can distinguish, Involve, Volume 13 (2020) no. 1, pp. 109-116 | DOI | MR | Zbl
[16] -partition products and fundamental quasi-symmetric function positivity, Adv. in Appl. Math., Volume 40 (2008) no. 3, pp. 271-294 | MR | Zbl
[17] -partition generating function equivalence of naturally labeled posets, J. Combin. Theory Ser. A, Volume 170 (2020), p. 105136, 31 | DOI | MR | Zbl
[18] -partitions and quasisymmetric power sums, Int. Math. Res. Not. IMRN (2021) no. 18, pp. 13975-14015 | DOI | MR
[19] Isomorphism of weighted trees and Stanley’s isomorphism conjecture for caterpillars, Ann. Inst. Henri Poincaré D, Volume 6 (2019) no. 3, pp. 357-384 | DOI | MR | Zbl
[20] A rooted variant of Stanley’s chromatic symmetric function (2022+) | arXiv
[21] Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | DOI | MR | Zbl
[22] On distinguishing trees by their chromatic symmetric functions, J. Combin. Theory Ser. A, Volume 115 (2008) no. 2, pp. 237-253 | DOI | MR | Zbl
[23] Equality of -partition generating functions, Ann. Comb., Volume 18 (2014) no. 3, pp. 489-514 | DOI | MR | Zbl
[24] Graphs with equal chromatic symmetric functions, Discrete Math., Volume 320 (2014), pp. 1-14 | DOI | MR | Zbl
[25] Chromatic quasisymmetric functions, Adv. Math., Volume 295 (2016), pp. 497-551 | DOI | MR | Zbl
[26] Symmetric Chromatic Polynomial of Trees (2015) | arXiv
[27] Ordered structures and partitions, Ph. D. Thesis, Harvard University (1971)
[28] Ordered structures and partitions, American Mathematical Society, Providence, R.I., 1972, iii+104 pages (Memoirs of the American Mathematical Society, No. 119) | MR
[29] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl
[30] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[31] On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR | Zbl
[32] SageMath, the Sage Mathematics Software System (Version 8.9) (2019)
[33] Reconstructing rooted trees from their strict order quasisymmetric functions (2022+) | arXiv
Cited by Sources: