The category of finite strings
Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 661-676.

We introduce the category of finite strings and study its basic properties. The category is closely related to the augmented simplex category, and it models categories of linear representations. Each lattice of non-crossing partitions arises naturally as a lattice of subobjects.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.274
Classification: 05E10, 16G20, 18N50
Keywords: String, simplex category, quiver representation, non-crossing partition, thick subcategory

Krause, Henning 1

1 Fakultät für Mathematik Universität Bielefeld D-33501 Bielefeld Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_3_661_0,
     author = {Krause, Henning},
     title = {The category of finite strings},
     journal = {Algebraic Combinatorics},
     pages = {661--676},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {3},
     year = {2023},
     doi = {10.5802/alco.274},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.274/}
}
TY  - JOUR
AU  - Krause, Henning
TI  - The category of finite strings
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 661
EP  - 676
VL  - 6
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.274/
DO  - 10.5802/alco.274
LA  - en
ID  - ALCO_2023__6_3_661_0
ER  - 
%0 Journal Article
%A Krause, Henning
%T The category of finite strings
%J Algebraic Combinatorics
%D 2023
%P 661-676
%V 6
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.274/
%R 10.5802/alco.274
%G en
%F ALCO_2023__6_3_661_0
Krause, Henning. The category of finite strings. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 661-676. doi : 10.5802/alco.274. https://alco.centre-mersenne.org/articles/10.5802/alco.274/

[1] Amdal, Ivar Kr.; Ringdal, Frode Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A-B, Volume 267 (1968), p. A247-A249 | MR | Zbl

[2] Butler, M. C. R.; Ringel, Claus Michael Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, Volume 15 (1987) no. 1-2, pp. 145-179 | DOI | MR | Zbl

[3] Cartier, Pierre Homologie cyclique: rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen..., 1985 no. 121-122, pp. 123-146 (Seminar Bourbaki, Vol. 1983/84) | Numdam | MR | Zbl

[4] Connes, Alain Cohomologie cyclique et foncteurs Ext n , C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983) no. 23, pp. 953-958 | MR | Zbl

[5] Dichev, Nikolay Dimitrov Thick subcategories for quiver representations, Ph. D. Thesis, Universität Paderborn (2009)

[6] Dlab, Vlastimil; Ringel, Claus Michael Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., Volume 6 (1976) no. 173, p. v+57 pp | MR | Zbl

[7] Dyckerhoff, Tobias; Jasso, Gustavo; Walde, Tashi Simplicial structures in higher Auslander-Reiten theory, Adv. Math., Volume 355 (2019), Paper no. 106762, 73 pages | MR | Zbl

[8] Gabriel, P.; Zisman, M. Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967, x+168 pages | DOI | MR

[9] Gabriel, Pierre Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-448 | DOI | Numdam | MR | Zbl

[10] Herschend, Martin; Jørgensen, Peter Classification of higher wide subcategories for higher Auslander algebras of type A, J. Pure Appl. Algebra, Volume 225 (2021) no. 5, Paper no. 106583, 22 pages | MR | Zbl

[11] Hubery, Andrew; Krause, Henning A categorification of non-crossing partitions, J. Eur. Math. Soc. (JEMS), Volume 18 (2016) no. 10, pp. 2273-2313 | DOI | MR | Zbl

[12] Igusa, Kiyoshi; Schiffler, Ralf Exceptional sequences and clusters, J. Algebra, Volume 323 (2010) no. 8, pp. 2183-2202 | DOI | MR | Zbl

[13] Ingalls, Colin; Thomas, Hugh Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009) no. 6, pp. 1533-1562 | DOI | MR | Zbl

[14] Iyama, Osamu Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl

[15] Krause, Henning Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, Cambridge, 2022, xxxiv+482 pages | MR

[16] Kreweras, G. Sur les partitions non croisées d’un cycle, Discrete Math., Volume 1 (1972) no. 4, pp. 333-350 | DOI | MR | Zbl

[17] Mac Lane, Saunders Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR

[18] Mac Lane, Saunders; Moerdijk, Ieke Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer-Verlag, New York, 1994, xii+629 pages (Corrected reprint of the 1992 edition) | DOI | MR

[19] Reiner, Victor Non-crossing partitions for classical reflection groups, Discrete Math., Volume 177 (1997) no. 1-3, pp. 195-222 | DOI | MR | Zbl

[20] Ringel, Claus Michael Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099, Springer-Verlag, Berlin, 1984, xiii+376 pages | DOI | MR

[21] Ringel, Claus Michael The Catalan combinatorics of the hereditary Artin algebras, Recent developments in representation theory (Contemp. Math.), Volume 673, Amer. Math. Soc., Providence, RI, 2016, pp. 51-177 | DOI | MR | Zbl

[22] Simion, Rodica Noncrossing partitions, Discrete Math., Volume 217 (2000) no. 1-3, pp. 367-409 | DOI | MR | Zbl

Cited by Sources: