We introduce the category of finite strings and study its basic properties. The category is closely related to the augmented simplex category, and it models categories of linear representations. Each lattice of non-crossing partitions arises naturally as a lattice of subobjects.
Accepted:
Published online:
Keywords: String, simplex category, quiver representation, non-crossing partition, thick subcategory
Krause, Henning 1
@article{ALCO_2023__6_3_661_0, author = {Krause, Henning}, title = {The category of finite strings}, journal = {Algebraic Combinatorics}, pages = {661--676}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {3}, year = {2023}, doi = {10.5802/alco.274}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.274/} }
Krause, Henning. The category of finite strings. Algebraic Combinatorics, Volume 6 (2023) no. 3, pp. 661-676. doi : 10.5802/alco.274. https://alco.centre-mersenne.org/articles/10.5802/alco.274/
[1] Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A-B, Volume 267 (1968), p. A247-A249 | MR | Zbl
[2] Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, Volume 15 (1987) no. 1-2, pp. 145-179 | DOI | MR | Zbl
[3] Homologie cyclique: rapport sur des travaux récents de Connes, Karoubi, Loday, Quillen, 1985 no. 121-122, pp. 123-146 (Seminar Bourbaki, Vol. 1983/84) | Numdam | MR | Zbl
[4] Cohomologie cyclique et foncteurs , C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983) no. 23, pp. 953-958 | MR | Zbl
[5] Thick subcategories for quiver representations, Ph. D. Thesis, Universität Paderborn (2009)
[6] Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., Volume 6 (1976) no. 173, p. v+57 pp | MR | Zbl
[7] Simplicial structures in higher Auslander-Reiten theory, Adv. Math., Volume 355 (2019), Paper no. 106762, 73 pages | MR | Zbl
[8] Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967, x+168 pages | DOI | MR
[9] Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-448 | DOI | Numdam | MR | Zbl
[10] Classification of higher wide subcategories for higher Auslander algebras of type , J. Pure Appl. Algebra, Volume 225 (2021) no. 5, Paper no. 106583, 22 pages | MR | Zbl
[11] A categorification of non-crossing partitions, J. Eur. Math. Soc. (JEMS), Volume 18 (2016) no. 10, pp. 2273-2313 | DOI | MR | Zbl
[12] Exceptional sequences and clusters, J. Algebra, Volume 323 (2010) no. 8, pp. 2183-2202 | DOI | MR | Zbl
[13] Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009) no. 6, pp. 1533-1562 | DOI | MR | Zbl
[14] Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl
[15] Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, Cambridge, 2022, xxxiv+482 pages | MR
[16] Sur les partitions non croisées d’un cycle, Discrete Math., Volume 1 (1972) no. 4, pp. 333-350 | DOI | MR | Zbl
[17] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR
[18] Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer-Verlag, New York, 1994, xii+629 pages (Corrected reprint of the 1992 edition) | DOI | MR
[19] Non-crossing partitions for classical reflection groups, Discrete Math., Volume 177 (1997) no. 1-3, pp. 195-222 | DOI | MR | Zbl
[20] Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099, Springer-Verlag, Berlin, 1984, xiii+376 pages | DOI | MR
[21] The Catalan combinatorics of the hereditary Artin algebras, Recent developments in representation theory (Contemp. Math.), Volume 673, Amer. Math. Soc., Providence, RI, 2016, pp. 51-177 | DOI | MR | Zbl
[22] Noncrossing partitions, Discrete Math., Volume 217 (2000) no. 1-3, pp. 367-409 | DOI | MR | Zbl
Cited by Sources: